You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

531 lines
21 KiB

from math import nan, inf
import pytest
from numpy.core import array, arange, printoptions
import numpy.polynomial as poly
from numpy.testing import assert_equal, assert_
# For testing polynomial printing with object arrays
from fractions import Fraction
from decimal import Decimal
class TestStrUnicodeSuperSubscripts:
@pytest.fixture(scope='class', autouse=True)
def use_unicode(self):
poly.set_default_printstyle('unicode')
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"),
([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"),
(arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + "
"6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + "
"11.0·x¹¹")),
))
def test_polynomial_str(self, inp, tgt):
res = str(poly.Polynomial(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"),
(arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + "
"5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + "
"9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")),
))
def test_chebyshev_str(self, inp, tgt):
res = str(poly.Chebyshev(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"),
(arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + "
"5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + "
"9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")),
))
def test_legendre_str(self, inp, tgt):
res = str(poly.Legendre(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"),
(arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + "
"5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + "
"9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")),
))
def test_hermite_str(self, inp, tgt):
res = str(poly.Hermite(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"),
(arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + "
"4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + "
"8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n"
"11.0·He₁₁(x)")),
))
def test_hermiteE_str(self, inp, tgt):
res = str(poly.HermiteE(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"),
(arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + "
"5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + "
"9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")),
))
def test_laguerre_str(self, inp, tgt):
res = str(poly.Laguerre(inp))
assert_equal(res, tgt)
class TestStrAscii:
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"),
([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"),
(arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + "
"5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + "
"9.0 x**9 + 10.0 x**10 + 11.0 x**11")),
))
def test_polynomial_str(self, inp, tgt):
res = str(poly.Polynomial(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"),
(arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + "
"4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + "
"8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n"
"11.0 T_11(x)")),
))
def test_chebyshev_str(self, inp, tgt):
res = str(poly.Chebyshev(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"),
(arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + "
"4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + "
"8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n"
"11.0 P_11(x)")),
))
def test_legendre_str(self, inp, tgt):
res = str(poly.Legendre(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"),
(arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + "
"4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + "
"8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n"
"11.0 H_11(x)")),
))
def test_hermite_str(self, inp, tgt):
res = str(poly.Hermite(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"),
(arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + "
"4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + "
"7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n"
"10.0 He_10(x) + 11.0 He_11(x)")),
))
def test_hermiteE_str(self, inp, tgt):
res = str(poly.HermiteE(inp))
assert_equal(res, tgt)
@pytest.mark.parametrize(('inp', 'tgt'), (
([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"),
([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"),
(arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + "
"4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + "
"8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n"
"11.0 L_11(x)")),
))
def test_laguerre_str(self, inp, tgt):
res = str(poly.Laguerre(inp))
assert_equal(res, tgt)
class TestLinebreaking:
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
def test_single_line_one_less(self):
# With 'ascii' style, len(str(p)) is default linewidth - 1 (i.e. 74)
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123])
assert_equal(len(str(p)), 74)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 + 123.0 x**4'
))
def test_num_chars_is_linewidth(self):
# len(str(p)) == default linewidth == 75
p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234])
assert_equal(len(str(p)), 75)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 +\n1234.0 x**4'
))
def test_first_linebreak_multiline_one_less_than_linewidth(self):
# Multiline str where len(first_line) + len(next_term) == lw - 1 == 74
p = poly.Polynomial(
[12345678, 12345678, 12345678, 12345678, 1, 12345678]
)
assert_equal(len(str(p).split('\n')[0]), 74)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5'
))
def test_first_linebreak_multiline_on_linewidth(self):
# First line is one character longer than previous test
p = poly.Polynomial(
[12345678, 12345678, 12345678, 12345678.12, 1, 12345678]
)
assert_equal(str(p), (
'12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
'12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5'
))
@pytest.mark.parametrize(('lw', 'tgt'), (
(75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
'900.0 x**9')),
(45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + '
'500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n'
'900.0 x**9')),
(132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
'500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
'900.0 x**9')),
))
def test_linewidth_printoption(self, lw, tgt):
p = poly.Polynomial(
[0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900]
)
with printoptions(linewidth=lw):
assert_equal(str(p), tgt)
for line in str(p).split('\n'):
assert_(len(line) < lw)
def test_set_default_printoptions():
p = poly.Polynomial([1, 2, 3])
c = poly.Chebyshev([1, 2, 3])
poly.set_default_printstyle('ascii')
assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2")
assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)")
poly.set_default_printstyle('unicode')
assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²")
assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)")
with pytest.raises(ValueError):
poly.set_default_printstyle('invalid_input')
def test_complex_coefficients():
"""Test both numpy and built-in complex."""
coefs = [0+1j, 1+1j, -2+2j, 3+0j]
# numpy complex
p1 = poly.Polynomial(coefs)
# Python complex
p2 = poly.Polynomial(array(coefs, dtype=object))
poly.set_default_printstyle('unicode')
assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³")
assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³")
poly.set_default_printstyle('ascii')
assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3")
assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3")
@pytest.mark.parametrize(('coefs', 'tgt'), (
(array([Fraction(1, 2), Fraction(3, 4)], dtype=object), (
"1/2 + 3/4·x"
)),
(array([1, 2, Fraction(5, 7)], dtype=object), (
"1 + 2·x + 5/7·x²"
)),
(array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), (
"1.00 + 2.2·x + 3·x²"
)),
))
def test_numeric_object_coefficients(coefs, tgt):
p = poly.Polynomial(coefs)
poly.set_default_printstyle('unicode')
assert_equal(str(p), tgt)
@pytest.mark.parametrize(('coefs', 'tgt'), (
(array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'),
(array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'),
))
def test_nonnumeric_object_coefficients(coefs, tgt):
"""
Test coef fallback for object arrays of non-numeric coefficients.
"""
p = poly.Polynomial(coefs)
poly.set_default_printstyle('unicode')
assert_equal(str(p), tgt)
class TestFormat:
def test_format_unicode(self):
poly.set_default_printstyle('ascii')
p = poly.Polynomial([1, 2, 0, -1])
assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³")
def test_format_ascii(self):
poly.set_default_printstyle('unicode')
p = poly.Polynomial([1, 2, 0, -1])
assert_equal(
format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3"
)
def test_empty_formatstr(self):
poly.set_default_printstyle('ascii')
p = poly.Polynomial([1, 2, 3])
assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2")
assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2")
def test_bad_formatstr(self):
p = poly.Polynomial([1, 2, 0, -1])
with pytest.raises(ValueError):
format(p, '.2f')
@pytest.mark.parametrize(('poly', 'tgt'), (
(poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'),
(poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'),
(poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'),
(poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'),
(poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'),
(poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'),
))
def test_symbol(poly, tgt):
p = poly([1, 2, 3], symbol='z')
assert_equal(f"{p:unicode}", tgt)
class TestRepr:
def test_polynomial_str(self):
res = repr(poly.Polynomial([0, 1]))
tgt = (
"Polynomial([0., 1.], domain=[-1, 1], window=[-1, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_chebyshev_str(self):
res = repr(poly.Chebyshev([0, 1]))
tgt = (
"Chebyshev([0., 1.], domain=[-1, 1], window=[-1, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_legendre_repr(self):
res = repr(poly.Legendre([0, 1]))
tgt = (
"Legendre([0., 1.], domain=[-1, 1], window=[-1, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_hermite_repr(self):
res = repr(poly.Hermite([0, 1]))
tgt = (
"Hermite([0., 1.], domain=[-1, 1], window=[-1, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_hermiteE_repr(self):
res = repr(poly.HermiteE([0, 1]))
tgt = (
"HermiteE([0., 1.], domain=[-1, 1], window=[-1, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
def test_laguerre_repr(self):
res = repr(poly.Laguerre([0, 1]))
tgt = (
"Laguerre([0., 1.], domain=[0, 1], window=[0, 1], "
"symbol='x')"
)
assert_equal(res, tgt)
class TestLatexRepr:
"""Test the latex repr used by Jupyter"""
def as_latex(self, obj):
# right now we ignore the formatting of scalars in our tests, since
# it makes them too verbose. Ideally, the formatting of scalars will
# be fixed such that tests below continue to pass
obj._repr_latex_scalar = lambda x, parens=False: str(x)
try:
return obj._repr_latex_()
finally:
del obj._repr_latex_scalar
def test_simple_polynomial(self):
# default input
p = poly.Polynomial([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')
# translated input
p = poly.Polynomial([1, 2, 3], domain=[-2, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')
# scaled input
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')
# affine input
p = poly.Polynomial([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')
def test_basis_func(self):
p = poly.Chebyshev([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
# affine input - check no surplus parens are added
p = poly.Chebyshev([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')
def test_multichar_basis_func(self):
p = poly.HermiteE([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')
def test_symbol_basic(self):
# default input
p = poly.Polynomial([1, 2, 3], symbol='z')
assert_equal(self.as_latex(p),
r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$')
# translated input
p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,'
r'\left(1.0 + z\right)^{2}$'
),
)
# scaled input
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,'
r'\left(2.0z\right)^{2}$'
),
)
# affine input
p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z')
assert_equal(
self.as_latex(p),
(
r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,'
r'\left(1.0 + 2.0z\right)^{2}$'
),
)
SWITCH_TO_EXP = (
'1.0 + (1.0e-01) x + (1.0e-02) x**2',
'1.2 + (1.2e-01) x + (1.2e-02) x**2',
'1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3',
'1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3',
'1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4',
'1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + '
'(1.23457e-04) x**4',
'1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + '
'(1.234568e-04) x**4 + (1.234568e-05) x**5',
'1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + '
'(1.2345679e-04) x**4 + (1.2345679e-05) x**5')
class TestPrintOptions:
"""
Test the output is properly configured via printoptions.
The exponential notation is enabled automatically when the values
are too small or too large.
"""
@pytest.fixture(scope='class', autouse=True)
def use_ascii(self):
poly.set_default_printstyle('ascii')
def test_str(self):
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 '
'+ (1.42857143e+08) x**3')
with printoptions(precision=3):
assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 '
'+ (1.429e+08) x**3')
def test_latex(self):
p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
assert_equal(p._repr_latex_(),
r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + '
r'\text{14285714.28571429}\,x^{2} + '
r'\text{(1.42857143e+08)}\,x^{3}$')
with printoptions(precision=3):
assert_equal(p._repr_latex_(),
r'$x \mapsto \text{0.5} + \text{0.143}\,x + '
r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$')
def test_fixed(self):
p = poly.Polynomial([1/2])
assert_equal(str(p), '0.5')
with printoptions(floatmode='fixed'):
assert_equal(str(p), '0.50000000')
with printoptions(floatmode='fixed', precision=4):
assert_equal(str(p), '0.5000')
def test_switch_to_exp(self):
for i, s in enumerate(SWITCH_TO_EXP):
with printoptions(precision=i):
p = poly.Polynomial([1.23456789*10**-i
for i in range(i//2+3)])
assert str(p).replace('\n', ' ') == s
def test_non_finite(self):
p = poly.Polynomial([nan, inf])
assert str(p) == 'nan + inf x'
assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$'
with printoptions(nanstr='NAN', infstr='INF'):
assert str(p) == 'NAN + INF x'
assert p._repr_latex_() == \
r'$x \mapsto \text{NAN} + \text{INF}\,x$'