You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
682 lines
23 KiB
682 lines
23 KiB
from collections.abc import Callable
|
|
from typing import Any, Union, overload, TypeVar, Literal
|
|
|
|
from numpy import (
|
|
bool_,
|
|
dtype,
|
|
float32,
|
|
float64,
|
|
int8,
|
|
int16,
|
|
int32,
|
|
int64,
|
|
int_,
|
|
ndarray,
|
|
uint,
|
|
uint8,
|
|
uint16,
|
|
uint32,
|
|
uint64,
|
|
)
|
|
from numpy.random import BitGenerator, SeedSequence
|
|
from numpy._typing import (
|
|
ArrayLike,
|
|
_ArrayLikeFloat_co,
|
|
_ArrayLikeInt_co,
|
|
_DoubleCodes,
|
|
_DTypeLikeBool,
|
|
_DTypeLikeInt,
|
|
_DTypeLikeUInt,
|
|
_Float32Codes,
|
|
_Float64Codes,
|
|
_FloatLike_co,
|
|
_Int8Codes,
|
|
_Int16Codes,
|
|
_Int32Codes,
|
|
_Int64Codes,
|
|
_IntCodes,
|
|
_ShapeLike,
|
|
_SingleCodes,
|
|
_SupportsDType,
|
|
_UInt8Codes,
|
|
_UInt16Codes,
|
|
_UInt32Codes,
|
|
_UInt64Codes,
|
|
_UIntCodes,
|
|
)
|
|
|
|
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
|
|
|
_DTypeLikeFloat32 = Union[
|
|
dtype[float32],
|
|
_SupportsDType[dtype[float32]],
|
|
type[float32],
|
|
_Float32Codes,
|
|
_SingleCodes,
|
|
]
|
|
|
|
_DTypeLikeFloat64 = Union[
|
|
dtype[float64],
|
|
_SupportsDType[dtype[float64]],
|
|
type[float],
|
|
type[float64],
|
|
_Float64Codes,
|
|
_DoubleCodes,
|
|
]
|
|
|
|
class Generator:
|
|
def __init__(self, bit_generator: BitGenerator) -> None: ...
|
|
def __repr__(self) -> str: ...
|
|
def __str__(self) -> str: ...
|
|
def __getstate__(self) -> dict[str, Any]: ...
|
|
def __setstate__(self, state: dict[str, Any]) -> None: ...
|
|
def __reduce__(self) -> tuple[Callable[[str], Generator], tuple[str], dict[str, Any]]: ...
|
|
@property
|
|
def bit_generator(self) -> BitGenerator: ...
|
|
def spawn(self, n_children: int) -> list[Generator]: ...
|
|
def bytes(self, length: int) -> bytes: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
*,
|
|
out: ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: None | ndarray[Any, dtype[float32]] = ...,
|
|
) -> ndarray[Any, dtype[float32]]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def permutation(self, x: int, axis: int = ...) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def permutation(self, x: ArrayLike, axis: int = ...) -> ndarray[Any, Any]: ...
|
|
@overload
|
|
def standard_exponential( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
*,
|
|
out: ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
*,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: None | ndarray[Any, dtype[float32]] = ...,
|
|
) -> ndarray[Any, dtype[float32]]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def random( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
*,
|
|
out: ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
*,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: None | ndarray[Any, dtype[float32]] = ...,
|
|
) -> ndarray[Any, dtype[float32]]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def beta(
|
|
self,
|
|
a: _FloatLike_co,
|
|
b: _FloatLike_co,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def beta(
|
|
self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def exponential(
|
|
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: int,
|
|
high: None | int = ...,
|
|
) -> int: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: int,
|
|
high: None | int = ...,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeBool = ...,
|
|
endpoint: bool = ...,
|
|
) -> bool: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: int,
|
|
high: None | int = ...,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
|
|
endpoint: bool = ...,
|
|
) -> int: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: _DTypeLikeBool = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[bool_]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[int8]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[int16]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[int32]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[uint8]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[uint16]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[uint32]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[uint64]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[int_]]: ...
|
|
@overload
|
|
def integers( # type: ignore[misc]
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: None | _ArrayLikeInt_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
|
|
endpoint: bool = ...,
|
|
) -> ndarray[Any, dtype[uint]]: ...
|
|
# TODO: Use a TypeVar _T here to get away from Any output? Should be int->ndarray[Any,dtype[int64]], ArrayLike[_T] -> _T | ndarray[Any,Any]
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: int,
|
|
size: None = ...,
|
|
replace: bool = ...,
|
|
p: None | _ArrayLikeFloat_co = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> int: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: int,
|
|
size: _ShapeLike = ...,
|
|
replace: bool = ...,
|
|
p: None | _ArrayLikeFloat_co = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: ArrayLike,
|
|
size: None = ...,
|
|
replace: bool = ...,
|
|
p: None | _ArrayLikeFloat_co = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: ArrayLike,
|
|
size: _ShapeLike = ...,
|
|
replace: bool = ...,
|
|
p: None | _ArrayLikeFloat_co = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> ndarray[Any, Any]: ...
|
|
@overload
|
|
def uniform(
|
|
self,
|
|
low: _FloatLike_co = ...,
|
|
high: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def uniform(
|
|
self,
|
|
low: _ArrayLikeFloat_co = ...,
|
|
high: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def normal(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def normal(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_gamma( # type: ignore[misc]
|
|
self,
|
|
shape: _FloatLike_co,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
*,
|
|
out: ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: None | ndarray[Any, dtype[float32]] = ...,
|
|
) -> ndarray[Any, dtype[float32]]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: None | ndarray[Any, dtype[float64]] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def gamma(self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def f(
|
|
self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def noncentral_f(self, dfnum: _FloatLike_co, dfden: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def noncentral_f(
|
|
self,
|
|
dfnum: _ArrayLikeFloat_co,
|
|
dfden: _ArrayLikeFloat_co,
|
|
nonc: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def chisquare(
|
|
self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def noncentral_chisquare(self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def noncentral_chisquare(
|
|
self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def standard_t(
|
|
self, df: _ArrayLikeFloat_co, size: None = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_t(
|
|
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def vonmises(self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def vonmises(
|
|
self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def pareto(
|
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def weibull(
|
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def power(
|
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def laplace(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def laplace(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def gumbel(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def gumbel(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def logistic(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def logistic(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def lognormal(
|
|
self,
|
|
mean: _FloatLike_co = ...,
|
|
sigma: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def lognormal(
|
|
self,
|
|
mean: _ArrayLikeFloat_co = ...,
|
|
sigma: _ArrayLikeFloat_co = ...,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def rayleigh(
|
|
self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def wald(self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def wald(
|
|
self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def triangular(
|
|
self,
|
|
left: _FloatLike_co,
|
|
mode: _FloatLike_co,
|
|
right: _FloatLike_co,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def triangular(
|
|
self,
|
|
left: _ArrayLikeFloat_co,
|
|
mode: _ArrayLikeFloat_co,
|
|
right: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
@overload
|
|
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def binomial(
|
|
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def negative_binomial(self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def negative_binomial(
|
|
self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def poisson(
|
|
self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def zipf(
|
|
self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def geometric(
|
|
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def hypergeometric(
|
|
self,
|
|
ngood: _ArrayLikeInt_co,
|
|
nbad: _ArrayLikeInt_co,
|
|
nsample: _ArrayLikeInt_co,
|
|
size: None | _ShapeLike = ...,
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
@overload
|
|
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def logseries(
|
|
self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
def multivariate_normal(
|
|
self,
|
|
mean: _ArrayLikeFloat_co,
|
|
cov: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...,
|
|
check_valid: Literal["warn", "raise", "ignore"] = ...,
|
|
tol: float = ...,
|
|
*,
|
|
method: Literal["svd", "eigh", "cholesky"] = ...,
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
def multinomial(
|
|
self, n: _ArrayLikeInt_co,
|
|
pvals: _ArrayLikeFloat_co,
|
|
size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
def multivariate_hypergeometric(
|
|
self,
|
|
colors: _ArrayLikeInt_co,
|
|
nsample: int,
|
|
size: None | _ShapeLike = ...,
|
|
method: Literal["marginals", "count"] = ...,
|
|
) -> ndarray[Any, dtype[int64]]: ...
|
|
def dirichlet(
|
|
self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
|
|
) -> ndarray[Any, dtype[float64]]: ...
|
|
def permuted(
|
|
self, x: ArrayLike, *, axis: None | int = ..., out: None | ndarray[Any, Any] = ...
|
|
) -> ndarray[Any, Any]: ...
|
|
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
|
|
|
|
def default_rng(
|
|
seed: None | _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator = ...
|
|
) -> Generator: ...
|