You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
702 lines
22 KiB
702 lines
22 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
concat,
|
|
date_range,
|
|
timedelta_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.tests.apply.common import series_transform_kernels
|
|
|
|
|
|
@pytest.fixture(params=[False, "compat"])
|
|
def by_row(request):
|
|
return request.param
|
|
|
|
|
|
def test_series_map_box_timedelta(by_row):
|
|
# GH#11349
|
|
ser = Series(timedelta_range("1 day 1 s", periods=3, freq="h"))
|
|
|
|
def f(x):
|
|
return x.total_seconds() if by_row else x.dt.total_seconds()
|
|
|
|
result = ser.apply(f, by_row=by_row)
|
|
|
|
expected = ser.map(lambda x: x.total_seconds())
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
expected = Series([86401.0, 90001.0, 93601.0])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply(datetime_series, by_row):
|
|
result = datetime_series.apply(np.sqrt, by_row=by_row)
|
|
with np.errstate(all="ignore"):
|
|
expected = np.sqrt(datetime_series)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# element-wise apply (ufunc)
|
|
result = datetime_series.apply(np.exp, by_row=by_row)
|
|
expected = np.exp(datetime_series)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# empty series
|
|
s = Series(dtype=object, name="foo", index=Index([], name="bar"))
|
|
rs = s.apply(lambda x: x, by_row=by_row)
|
|
tm.assert_series_equal(s, rs)
|
|
|
|
# check all metadata (GH 9322)
|
|
assert s is not rs
|
|
assert s.index is rs.index
|
|
assert s.dtype == rs.dtype
|
|
assert s.name == rs.name
|
|
|
|
# index but no data
|
|
s = Series(index=[1, 2, 3], dtype=np.float64)
|
|
rs = s.apply(lambda x: x, by_row=by_row)
|
|
tm.assert_series_equal(s, rs)
|
|
|
|
|
|
def test_apply_map_same_length_inference_bug():
|
|
s = Series([1, 2])
|
|
|
|
def f(x):
|
|
return (x, x + 1)
|
|
|
|
result = s.apply(f, by_row="compat")
|
|
expected = s.map(f)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("convert_dtype", [True, False])
|
|
def test_apply_convert_dtype_deprecated(convert_dtype):
|
|
ser = Series(np.random.default_rng(2).standard_normal(10))
|
|
|
|
def func(x):
|
|
return x if x > 0 else np.nan
|
|
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
ser.apply(func, convert_dtype=convert_dtype, by_row="compat")
|
|
|
|
|
|
def test_apply_args():
|
|
s = Series(["foo,bar"])
|
|
|
|
result = s.apply(str.split, args=(",",))
|
|
assert result[0] == ["foo", "bar"]
|
|
assert isinstance(result[0], list)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"args, kwargs, increment",
|
|
[((), {}, 0), ((), {"a": 1}, 1), ((2, 3), {}, 32), ((1,), {"c": 2}, 201)],
|
|
)
|
|
def test_agg_args(args, kwargs, increment):
|
|
# GH 43357
|
|
def f(x, a=0, b=0, c=0):
|
|
return x + a + 10 * b + 100 * c
|
|
|
|
s = Series([1, 2])
|
|
msg = (
|
|
"in Series.agg cannot aggregate and has been deprecated. "
|
|
"Use Series.transform to keep behavior unchanged."
|
|
)
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = s.agg(f, 0, *args, **kwargs)
|
|
expected = s + increment
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_agg_mapping_func_deprecated():
|
|
# GH 53325
|
|
s = Series([1, 2, 3])
|
|
|
|
def foo1(x, a=1, c=0):
|
|
return x + a + c
|
|
|
|
def foo2(x, b=2, c=0):
|
|
return x + b + c
|
|
|
|
msg = "using .+ in Series.agg cannot aggregate and"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
s.agg(foo1, 0, 3, c=4)
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
s.agg([foo1, foo2], 0, 3, c=4)
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
s.agg({"a": foo1, "b": foo2}, 0, 3, c=4)
|
|
|
|
|
|
def test_series_apply_map_box_timestamps(by_row):
|
|
# GH#2689, GH#2627
|
|
ser = Series(date_range("1/1/2000", periods=10))
|
|
|
|
def func(x):
|
|
return (x.hour, x.day, x.month)
|
|
|
|
if not by_row:
|
|
msg = "Series' object has no attribute 'hour'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
ser.apply(func, by_row=by_row)
|
|
return
|
|
|
|
result = ser.apply(func, by_row=by_row)
|
|
expected = ser.map(func)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_box_dt64():
|
|
# ufunc will not be boxed. Same test cases as the test_map_box
|
|
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
|
|
ser = Series(vals, dtype="M8[ns]")
|
|
assert ser.dtype == "datetime64[ns]"
|
|
# boxed value must be Timestamp instance
|
|
res = ser.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}", by_row="compat")
|
|
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_apply_box_dt64tz():
|
|
vals = [
|
|
pd.Timestamp("2011-01-01", tz="US/Eastern"),
|
|
pd.Timestamp("2011-01-02", tz="US/Eastern"),
|
|
]
|
|
ser = Series(vals, dtype="M8[ns, US/Eastern]")
|
|
assert ser.dtype == "datetime64[ns, US/Eastern]"
|
|
res = ser.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}", by_row="compat")
|
|
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_apply_box_td64():
|
|
# timedelta
|
|
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
|
|
ser = Series(vals)
|
|
assert ser.dtype == "timedelta64[ns]"
|
|
res = ser.apply(lambda x: f"{type(x).__name__}_{x.days}", by_row="compat")
|
|
exp = Series(["Timedelta_1", "Timedelta_2"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_apply_box_period():
|
|
# period
|
|
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
|
|
ser = Series(vals)
|
|
assert ser.dtype == "Period[M]"
|
|
res = ser.apply(lambda x: f"{type(x).__name__}_{x.freqstr}", by_row="compat")
|
|
exp = Series(["Period_M", "Period_M"])
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
|
|
def test_apply_datetimetz(by_row):
|
|
values = date_range("2011-01-01", "2011-01-02", freq="h").tz_localize("Asia/Tokyo")
|
|
s = Series(values, name="XX")
|
|
|
|
result = s.apply(lambda x: x + pd.offsets.Day(), by_row=by_row)
|
|
exp_values = date_range("2011-01-02", "2011-01-03", freq="h").tz_localize(
|
|
"Asia/Tokyo"
|
|
)
|
|
exp = Series(exp_values, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
result = s.apply(lambda x: x.hour if by_row else x.dt.hour, by_row=by_row)
|
|
exp = Series(list(range(24)) + [0], name="XX", dtype="int64" if by_row else "int32")
|
|
tm.assert_series_equal(result, exp)
|
|
|
|
# not vectorized
|
|
def f(x):
|
|
return str(x.tz) if by_row else str(x.dt.tz)
|
|
|
|
result = s.apply(f, by_row=by_row)
|
|
if by_row:
|
|
exp = Series(["Asia/Tokyo"] * 25, name="XX")
|
|
tm.assert_series_equal(result, exp)
|
|
else:
|
|
assert result == "Asia/Tokyo"
|
|
|
|
|
|
def test_apply_categorical(by_row, using_infer_string):
|
|
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
|
|
ser = Series(values, name="XX", index=list("abcdefg"))
|
|
|
|
if not by_row:
|
|
msg = "Series' object has no attribute 'lower"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
ser.apply(lambda x: x.lower(), by_row=by_row)
|
|
assert ser.apply(lambda x: "A", by_row=by_row) == "A"
|
|
return
|
|
|
|
result = ser.apply(lambda x: x.lower(), by_row=by_row)
|
|
|
|
# should be categorical dtype when the number of categories are
|
|
# the same
|
|
values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
|
|
exp = Series(values, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
tm.assert_categorical_equal(result.values, exp.values)
|
|
|
|
result = ser.apply(lambda x: "A")
|
|
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
|
|
tm.assert_series_equal(result, exp)
|
|
assert result.dtype == object if not using_infer_string else "string[pyarrow_numpy]"
|
|
|
|
|
|
@pytest.mark.parametrize("series", [["1-1", "1-1", np.nan], ["1-1", "1-2", np.nan]])
|
|
def test_apply_categorical_with_nan_values(series, by_row):
|
|
# GH 20714 bug fixed in: GH 24275
|
|
s = Series(series, dtype="category")
|
|
if not by_row:
|
|
msg = "'Series' object has no attribute 'split'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
s.apply(lambda x: x.split("-")[0], by_row=by_row)
|
|
return
|
|
|
|
result = s.apply(lambda x: x.split("-")[0], by_row=by_row)
|
|
result = result.astype(object)
|
|
expected = Series(["1", "1", np.nan], dtype="category")
|
|
expected = expected.astype(object)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_apply_empty_integer_series_with_datetime_index(by_row):
|
|
# GH 21245
|
|
s = Series([], index=date_range(start="2018-01-01", periods=0), dtype=int)
|
|
result = s.apply(lambda x: x, by_row=by_row)
|
|
tm.assert_series_equal(result, s)
|
|
|
|
|
|
def test_apply_dataframe_iloc():
|
|
uintDF = DataFrame(np.uint64([1, 2, 3, 4, 5]), columns=["Numbers"])
|
|
indexDF = DataFrame([2, 3, 2, 1, 2], columns=["Indices"])
|
|
|
|
def retrieve(targetRow, targetDF):
|
|
val = targetDF["Numbers"].iloc[targetRow]
|
|
return val
|
|
|
|
result = indexDF["Indices"].apply(retrieve, args=(uintDF,))
|
|
expected = Series([3, 4, 3, 2, 3], name="Indices", dtype="uint64")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_transform(string_series, by_row):
|
|
# transforming functions
|
|
|
|
with np.errstate(all="ignore"):
|
|
f_sqrt = np.sqrt(string_series)
|
|
f_abs = np.abs(string_series)
|
|
|
|
# ufunc
|
|
result = string_series.apply(np.sqrt, by_row=by_row)
|
|
expected = f_sqrt.copy()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# list-like
|
|
result = string_series.apply([np.sqrt], by_row=by_row)
|
|
expected = f_sqrt.to_frame().copy()
|
|
expected.columns = ["sqrt"]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = string_series.apply(["sqrt"], by_row=by_row)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# multiple items in list
|
|
# these are in the order as if we are applying both functions per
|
|
# series and then concatting
|
|
expected = concat([f_sqrt, f_abs], axis=1)
|
|
expected.columns = ["sqrt", "absolute"]
|
|
result = string_series.apply([np.sqrt, np.abs], by_row=by_row)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# dict, provide renaming
|
|
expected = concat([f_sqrt, f_abs], axis=1)
|
|
expected.columns = ["foo", "bar"]
|
|
expected = expected.unstack().rename("series")
|
|
|
|
result = string_series.apply({"foo": np.sqrt, "bar": np.abs}, by_row=by_row)
|
|
tm.assert_series_equal(result.reindex_like(expected), expected)
|
|
|
|
|
|
@pytest.mark.parametrize("op", series_transform_kernels)
|
|
def test_transform_partial_failure(op, request):
|
|
# GH 35964
|
|
if op in ("ffill", "bfill", "pad", "backfill", "shift"):
|
|
request.applymarker(
|
|
pytest.mark.xfail(reason=f"{op} is successful on any dtype")
|
|
)
|
|
|
|
# Using object makes most transform kernels fail
|
|
ser = Series(3 * [object])
|
|
|
|
if op in ("fillna", "ngroup"):
|
|
error = ValueError
|
|
msg = "Transform function failed"
|
|
else:
|
|
error = TypeError
|
|
msg = "|".join(
|
|
[
|
|
"not supported between instances of 'type' and 'type'",
|
|
"unsupported operand type",
|
|
]
|
|
)
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform([op, "shift"])
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": op, "B": "shift"})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": [op], "B": ["shift"]})
|
|
|
|
with pytest.raises(error, match=msg):
|
|
ser.transform({"A": [op, "shift"], "B": [op]})
|
|
|
|
|
|
def test_transform_partial_failure_valueerror():
|
|
# GH 40211
|
|
def noop(x):
|
|
return x
|
|
|
|
def raising_op(_):
|
|
raise ValueError
|
|
|
|
ser = Series(3 * [object])
|
|
msg = "Transform function failed"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform([noop, raising_op])
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": raising_op, "B": noop})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": [raising_op], "B": [noop]})
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.transform({"A": [noop, raising_op], "B": [noop]})
|
|
|
|
|
|
def test_demo():
|
|
# demonstration tests
|
|
s = Series(range(6), dtype="int64", name="series")
|
|
|
|
result = s.agg(["min", "max"])
|
|
expected = Series([0, 5], index=["min", "max"], name="series")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = s.agg({"foo": "min"})
|
|
expected = Series([0], index=["foo"], name="series")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize("func", [str, lambda x: str(x)])
|
|
def test_apply_map_evaluate_lambdas_the_same(string_series, func, by_row):
|
|
# test that we are evaluating row-by-row first if by_row="compat"
|
|
# else vectorized evaluation
|
|
result = string_series.apply(func, by_row=by_row)
|
|
|
|
if by_row:
|
|
expected = string_series.map(func)
|
|
tm.assert_series_equal(result, expected)
|
|
else:
|
|
assert result == str(string_series)
|
|
|
|
|
|
def test_agg_evaluate_lambdas(string_series):
|
|
# GH53325
|
|
# in the future, the result will be a Series class.
|
|
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
result = string_series.agg(lambda x: type(x))
|
|
assert isinstance(result, Series) and len(result) == len(string_series)
|
|
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
result = string_series.agg(type)
|
|
assert isinstance(result, Series) and len(result) == len(string_series)
|
|
|
|
|
|
@pytest.mark.parametrize("op_name", ["agg", "apply"])
|
|
def test_with_nested_series(datetime_series, op_name):
|
|
# GH 2316
|
|
# .agg with a reducer and a transform, what to do
|
|
msg = "cannot aggregate"
|
|
warning = FutureWarning if op_name == "agg" else None
|
|
with tm.assert_produces_warning(warning, match=msg):
|
|
# GH52123
|
|
result = getattr(datetime_series, op_name)(
|
|
lambda x: Series([x, x**2], index=["x", "x^2"])
|
|
)
|
|
expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = datetime_series.agg(lambda x: Series([x, x**2], index=["x", "x^2"]))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_replicate_describe(string_series):
|
|
# this also tests a result set that is all scalars
|
|
expected = string_series.describe()
|
|
result = string_series.apply(
|
|
{
|
|
"count": "count",
|
|
"mean": "mean",
|
|
"std": "std",
|
|
"min": "min",
|
|
"25%": lambda x: x.quantile(0.25),
|
|
"50%": "median",
|
|
"75%": lambda x: x.quantile(0.75),
|
|
"max": "max",
|
|
},
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_reduce(string_series):
|
|
# reductions with named functions
|
|
result = string_series.agg(["sum", "mean"])
|
|
expected = Series(
|
|
[string_series.sum(), string_series.mean()],
|
|
["sum", "mean"],
|
|
name=string_series.name,
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"how, kwds",
|
|
[("agg", {}), ("apply", {"by_row": "compat"}), ("apply", {"by_row": False})],
|
|
)
|
|
def test_non_callable_aggregates(how, kwds):
|
|
# test agg using non-callable series attributes
|
|
# GH 39116 - expand to apply
|
|
s = Series([1, 2, None])
|
|
|
|
# Calling agg w/ just a string arg same as calling s.arg
|
|
result = getattr(s, how)("size", **kwds)
|
|
expected = s.size
|
|
assert result == expected
|
|
|
|
# test when mixed w/ callable reducers
|
|
result = getattr(s, how)(["size", "count", "mean"], **kwds)
|
|
expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = getattr(s, how)({"size": "size", "count": "count", "mean": "mean"}, **kwds)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_series_apply_no_suffix_index(by_row):
|
|
# GH36189
|
|
s = Series([4] * 3)
|
|
result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()], by_row=by_row)
|
|
expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"dti,exp",
|
|
[
|
|
(
|
|
Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])),
|
|
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
|
|
),
|
|
(
|
|
Series(
|
|
np.arange(10, dtype=np.float64),
|
|
index=date_range("2020-01-01", periods=10),
|
|
name="ts",
|
|
),
|
|
DataFrame(np.repeat([[1, 2]], 10, axis=0), dtype="int64"),
|
|
),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("aware", [True, False])
|
|
def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
|
|
# GH 25959
|
|
# Calling apply on a localized time series should not cause an error
|
|
if aware:
|
|
index = dti.tz_localize("UTC").index
|
|
else:
|
|
index = dti.index
|
|
result = Series(index).apply(lambda x: Series([1, 2]))
|
|
tm.assert_frame_equal(result, exp)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"by_row, expected", [("compat", Series(np.ones(10), dtype="int64")), (False, 1)]
|
|
)
|
|
def test_apply_scalar_on_date_time_index_aware_series(by_row, expected):
|
|
# GH 25959
|
|
# Calling apply on a localized time series should not cause an error
|
|
series = Series(
|
|
np.arange(10, dtype=np.float64),
|
|
index=date_range("2020-01-01", periods=10, tz="UTC"),
|
|
)
|
|
result = Series(series.index).apply(lambda x: 1, by_row=by_row)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
def test_apply_to_timedelta(by_row):
|
|
list_of_valid_strings = ["00:00:01", "00:00:02"]
|
|
a = pd.to_timedelta(list_of_valid_strings)
|
|
b = Series(list_of_valid_strings).apply(pd.to_timedelta, by_row=by_row)
|
|
tm.assert_series_equal(Series(a), b)
|
|
|
|
list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT]
|
|
|
|
a = pd.to_timedelta(list_of_strings)
|
|
ser = Series(list_of_strings)
|
|
b = ser.apply(pd.to_timedelta, by_row=by_row)
|
|
tm.assert_series_equal(Series(a), b)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, names",
|
|
[
|
|
([np.sum], ["sum"]),
|
|
([np.sum, np.mean], ["sum", "mean"]),
|
|
(np.array([np.sum]), ["sum"]),
|
|
(np.array([np.sum, np.mean]), ["sum", "mean"]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"how, kwargs",
|
|
[["agg", {}], ["apply", {"by_row": "compat"}], ["apply", {"by_row": False}]],
|
|
)
|
|
def test_apply_listlike_reducer(string_series, ops, names, how, kwargs):
|
|
# GH 39140
|
|
expected = Series({name: op(string_series) for name, op in zip(names, ops)})
|
|
expected.name = "series"
|
|
warn = FutureWarning if how == "agg" else None
|
|
msg = f"using Series.[{'|'.join(names)}]"
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result = getattr(string_series, how)(ops, **kwargs)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops",
|
|
[
|
|
{"A": np.sum},
|
|
{"A": np.sum, "B": np.mean},
|
|
Series({"A": np.sum}),
|
|
Series({"A": np.sum, "B": np.mean}),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"how, kwargs",
|
|
[["agg", {}], ["apply", {"by_row": "compat"}], ["apply", {"by_row": False}]],
|
|
)
|
|
def test_apply_dictlike_reducer(string_series, ops, how, kwargs, by_row):
|
|
# GH 39140
|
|
expected = Series({name: op(string_series) for name, op in ops.items()})
|
|
expected.name = string_series.name
|
|
warn = FutureWarning if how == "agg" else None
|
|
msg = "using Series.[sum|mean]"
|
|
with tm.assert_produces_warning(warn, match=msg):
|
|
result = getattr(string_series, how)(ops, **kwargs)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, names",
|
|
[
|
|
([np.sqrt], ["sqrt"]),
|
|
([np.abs, np.sqrt], ["absolute", "sqrt"]),
|
|
(np.array([np.sqrt]), ["sqrt"]),
|
|
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
|
|
],
|
|
)
|
|
def test_apply_listlike_transformer(string_series, ops, names, by_row):
|
|
# GH 39140
|
|
with np.errstate(all="ignore"):
|
|
expected = concat([op(string_series) for op in ops], axis=1)
|
|
expected.columns = names
|
|
result = string_series.apply(ops, by_row=by_row)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, expected",
|
|
[
|
|
([lambda x: x], DataFrame({"<lambda>": [1, 2, 3]})),
|
|
([lambda x: x.sum()], Series([6], index=["<lambda>"])),
|
|
],
|
|
)
|
|
def test_apply_listlike_lambda(ops, expected, by_row):
|
|
# GH53400
|
|
ser = Series([1, 2, 3])
|
|
result = ser.apply(ops, by_row=by_row)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops",
|
|
[
|
|
{"A": np.sqrt},
|
|
{"A": np.sqrt, "B": np.exp},
|
|
Series({"A": np.sqrt}),
|
|
Series({"A": np.sqrt, "B": np.exp}),
|
|
],
|
|
)
|
|
def test_apply_dictlike_transformer(string_series, ops, by_row):
|
|
# GH 39140
|
|
with np.errstate(all="ignore"):
|
|
expected = concat({name: op(string_series) for name, op in ops.items()})
|
|
expected.name = string_series.name
|
|
result = string_series.apply(ops, by_row=by_row)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"ops, expected",
|
|
[
|
|
(
|
|
{"a": lambda x: x},
|
|
Series([1, 2, 3], index=MultiIndex.from_arrays([["a"] * 3, range(3)])),
|
|
),
|
|
({"a": lambda x: x.sum()}, Series([6], index=["a"])),
|
|
],
|
|
)
|
|
def test_apply_dictlike_lambda(ops, by_row, expected):
|
|
# GH53400
|
|
ser = Series([1, 2, 3])
|
|
result = ser.apply(ops, by_row=by_row)
|
|
tm.assert_equal(result, expected)
|
|
|
|
|
|
def test_apply_retains_column_name(by_row):
|
|
# GH 16380
|
|
df = DataFrame({"x": range(3)}, Index(range(3), name="x"))
|
|
result = df.x.apply(lambda x: Series(range(x + 1), Index(range(x + 1), name="y")))
|
|
expected = DataFrame(
|
|
[[0.0, np.nan, np.nan], [0.0, 1.0, np.nan], [0.0, 1.0, 2.0]],
|
|
columns=Index(range(3), name="y"),
|
|
index=Index(range(3), name="x"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_apply_type():
|
|
# GH 46719
|
|
s = Series([3, "string", float], index=["a", "b", "c"])
|
|
result = s.apply(type)
|
|
expected = Series([int, str, type], index=["a", "b", "c"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_series_apply_unpack_nested_data():
|
|
# GH#55189
|
|
ser = Series([[1, 2, 3], [4, 5, 6, 7]])
|
|
result = ser.apply(lambda x: Series(x))
|
|
expected = DataFrame({0: [1.0, 4.0], 1: [2.0, 5.0], 2: [3.0, 6.0], 3: [np.nan, 7]})
|
|
tm.assert_frame_equal(result, expected)
|