You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

702 lines
22 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
concat,
date_range,
timedelta_range,
)
import pandas._testing as tm
from pandas.tests.apply.common import series_transform_kernels
@pytest.fixture(params=[False, "compat"])
def by_row(request):
return request.param
def test_series_map_box_timedelta(by_row):
# GH#11349
ser = Series(timedelta_range("1 day 1 s", periods=3, freq="h"))
def f(x):
return x.total_seconds() if by_row else x.dt.total_seconds()
result = ser.apply(f, by_row=by_row)
expected = ser.map(lambda x: x.total_seconds())
tm.assert_series_equal(result, expected)
expected = Series([86401.0, 90001.0, 93601.0])
tm.assert_series_equal(result, expected)
def test_apply(datetime_series, by_row):
result = datetime_series.apply(np.sqrt, by_row=by_row)
with np.errstate(all="ignore"):
expected = np.sqrt(datetime_series)
tm.assert_series_equal(result, expected)
# element-wise apply (ufunc)
result = datetime_series.apply(np.exp, by_row=by_row)
expected = np.exp(datetime_series)
tm.assert_series_equal(result, expected)
# empty series
s = Series(dtype=object, name="foo", index=Index([], name="bar"))
rs = s.apply(lambda x: x, by_row=by_row)
tm.assert_series_equal(s, rs)
# check all metadata (GH 9322)
assert s is not rs
assert s.index is rs.index
assert s.dtype == rs.dtype
assert s.name == rs.name
# index but no data
s = Series(index=[1, 2, 3], dtype=np.float64)
rs = s.apply(lambda x: x, by_row=by_row)
tm.assert_series_equal(s, rs)
def test_apply_map_same_length_inference_bug():
s = Series([1, 2])
def f(x):
return (x, x + 1)
result = s.apply(f, by_row="compat")
expected = s.map(f)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("convert_dtype", [True, False])
def test_apply_convert_dtype_deprecated(convert_dtype):
ser = Series(np.random.default_rng(2).standard_normal(10))
def func(x):
return x if x > 0 else np.nan
with tm.assert_produces_warning(FutureWarning):
ser.apply(func, convert_dtype=convert_dtype, by_row="compat")
def test_apply_args():
s = Series(["foo,bar"])
result = s.apply(str.split, args=(",",))
assert result[0] == ["foo", "bar"]
assert isinstance(result[0], list)
@pytest.mark.parametrize(
"args, kwargs, increment",
[((), {}, 0), ((), {"a": 1}, 1), ((2, 3), {}, 32), ((1,), {"c": 2}, 201)],
)
def test_agg_args(args, kwargs, increment):
# GH 43357
def f(x, a=0, b=0, c=0):
return x + a + 10 * b + 100 * c
s = Series([1, 2])
msg = (
"in Series.agg cannot aggregate and has been deprecated. "
"Use Series.transform to keep behavior unchanged."
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = s.agg(f, 0, *args, **kwargs)
expected = s + increment
tm.assert_series_equal(result, expected)
def test_agg_mapping_func_deprecated():
# GH 53325
s = Series([1, 2, 3])
def foo1(x, a=1, c=0):
return x + a + c
def foo2(x, b=2, c=0):
return x + b + c
msg = "using .+ in Series.agg cannot aggregate and"
with tm.assert_produces_warning(FutureWarning, match=msg):
s.agg(foo1, 0, 3, c=4)
with tm.assert_produces_warning(FutureWarning, match=msg):
s.agg([foo1, foo2], 0, 3, c=4)
with tm.assert_produces_warning(FutureWarning, match=msg):
s.agg({"a": foo1, "b": foo2}, 0, 3, c=4)
def test_series_apply_map_box_timestamps(by_row):
# GH#2689, GH#2627
ser = Series(date_range("1/1/2000", periods=10))
def func(x):
return (x.hour, x.day, x.month)
if not by_row:
msg = "Series' object has no attribute 'hour'"
with pytest.raises(AttributeError, match=msg):
ser.apply(func, by_row=by_row)
return
result = ser.apply(func, by_row=by_row)
expected = ser.map(func)
tm.assert_series_equal(result, expected)
def test_apply_box_dt64():
# ufunc will not be boxed. Same test cases as the test_map_box
vals = [pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02")]
ser = Series(vals, dtype="M8[ns]")
assert ser.dtype == "datetime64[ns]"
# boxed value must be Timestamp instance
res = ser.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}", by_row="compat")
exp = Series(["Timestamp_1_None", "Timestamp_2_None"])
tm.assert_series_equal(res, exp)
def test_apply_box_dt64tz():
vals = [
pd.Timestamp("2011-01-01", tz="US/Eastern"),
pd.Timestamp("2011-01-02", tz="US/Eastern"),
]
ser = Series(vals, dtype="M8[ns, US/Eastern]")
assert ser.dtype == "datetime64[ns, US/Eastern]"
res = ser.apply(lambda x: f"{type(x).__name__}_{x.day}_{x.tz}", by_row="compat")
exp = Series(["Timestamp_1_US/Eastern", "Timestamp_2_US/Eastern"])
tm.assert_series_equal(res, exp)
def test_apply_box_td64():
# timedelta
vals = [pd.Timedelta("1 days"), pd.Timedelta("2 days")]
ser = Series(vals)
assert ser.dtype == "timedelta64[ns]"
res = ser.apply(lambda x: f"{type(x).__name__}_{x.days}", by_row="compat")
exp = Series(["Timedelta_1", "Timedelta_2"])
tm.assert_series_equal(res, exp)
def test_apply_box_period():
# period
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
ser = Series(vals)
assert ser.dtype == "Period[M]"
res = ser.apply(lambda x: f"{type(x).__name__}_{x.freqstr}", by_row="compat")
exp = Series(["Period_M", "Period_M"])
tm.assert_series_equal(res, exp)
def test_apply_datetimetz(by_row):
values = date_range("2011-01-01", "2011-01-02", freq="h").tz_localize("Asia/Tokyo")
s = Series(values, name="XX")
result = s.apply(lambda x: x + pd.offsets.Day(), by_row=by_row)
exp_values = date_range("2011-01-02", "2011-01-03", freq="h").tz_localize(
"Asia/Tokyo"
)
exp = Series(exp_values, name="XX")
tm.assert_series_equal(result, exp)
result = s.apply(lambda x: x.hour if by_row else x.dt.hour, by_row=by_row)
exp = Series(list(range(24)) + [0], name="XX", dtype="int64" if by_row else "int32")
tm.assert_series_equal(result, exp)
# not vectorized
def f(x):
return str(x.tz) if by_row else str(x.dt.tz)
result = s.apply(f, by_row=by_row)
if by_row:
exp = Series(["Asia/Tokyo"] * 25, name="XX")
tm.assert_series_equal(result, exp)
else:
assert result == "Asia/Tokyo"
def test_apply_categorical(by_row, using_infer_string):
values = pd.Categorical(list("ABBABCD"), categories=list("DCBA"), ordered=True)
ser = Series(values, name="XX", index=list("abcdefg"))
if not by_row:
msg = "Series' object has no attribute 'lower"
with pytest.raises(AttributeError, match=msg):
ser.apply(lambda x: x.lower(), by_row=by_row)
assert ser.apply(lambda x: "A", by_row=by_row) == "A"
return
result = ser.apply(lambda x: x.lower(), by_row=by_row)
# should be categorical dtype when the number of categories are
# the same
values = pd.Categorical(list("abbabcd"), categories=list("dcba"), ordered=True)
exp = Series(values, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
tm.assert_categorical_equal(result.values, exp.values)
result = ser.apply(lambda x: "A")
exp = Series(["A"] * 7, name="XX", index=list("abcdefg"))
tm.assert_series_equal(result, exp)
assert result.dtype == object if not using_infer_string else "string[pyarrow_numpy]"
@pytest.mark.parametrize("series", [["1-1", "1-1", np.nan], ["1-1", "1-2", np.nan]])
def test_apply_categorical_with_nan_values(series, by_row):
# GH 20714 bug fixed in: GH 24275
s = Series(series, dtype="category")
if not by_row:
msg = "'Series' object has no attribute 'split'"
with pytest.raises(AttributeError, match=msg):
s.apply(lambda x: x.split("-")[0], by_row=by_row)
return
result = s.apply(lambda x: x.split("-")[0], by_row=by_row)
result = result.astype(object)
expected = Series(["1", "1", np.nan], dtype="category")
expected = expected.astype(object)
tm.assert_series_equal(result, expected)
def test_apply_empty_integer_series_with_datetime_index(by_row):
# GH 21245
s = Series([], index=date_range(start="2018-01-01", periods=0), dtype=int)
result = s.apply(lambda x: x, by_row=by_row)
tm.assert_series_equal(result, s)
def test_apply_dataframe_iloc():
uintDF = DataFrame(np.uint64([1, 2, 3, 4, 5]), columns=["Numbers"])
indexDF = DataFrame([2, 3, 2, 1, 2], columns=["Indices"])
def retrieve(targetRow, targetDF):
val = targetDF["Numbers"].iloc[targetRow]
return val
result = indexDF["Indices"].apply(retrieve, args=(uintDF,))
expected = Series([3, 4, 3, 2, 3], name="Indices", dtype="uint64")
tm.assert_series_equal(result, expected)
def test_transform(string_series, by_row):
# transforming functions
with np.errstate(all="ignore"):
f_sqrt = np.sqrt(string_series)
f_abs = np.abs(string_series)
# ufunc
result = string_series.apply(np.sqrt, by_row=by_row)
expected = f_sqrt.copy()
tm.assert_series_equal(result, expected)
# list-like
result = string_series.apply([np.sqrt], by_row=by_row)
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
tm.assert_frame_equal(result, expected)
result = string_series.apply(["sqrt"], by_row=by_row)
tm.assert_frame_equal(result, expected)
# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["sqrt", "absolute"]
result = string_series.apply([np.sqrt, np.abs], by_row=by_row)
tm.assert_frame_equal(result, expected)
# dict, provide renaming
expected = concat([f_sqrt, f_abs], axis=1)
expected.columns = ["foo", "bar"]
expected = expected.unstack().rename("series")
result = string_series.apply({"foo": np.sqrt, "bar": np.abs}, by_row=by_row)
tm.assert_series_equal(result.reindex_like(expected), expected)
@pytest.mark.parametrize("op", series_transform_kernels)
def test_transform_partial_failure(op, request):
# GH 35964
if op in ("ffill", "bfill", "pad", "backfill", "shift"):
request.applymarker(
pytest.mark.xfail(reason=f"{op} is successful on any dtype")
)
# Using object makes most transform kernels fail
ser = Series(3 * [object])
if op in ("fillna", "ngroup"):
error = ValueError
msg = "Transform function failed"
else:
error = TypeError
msg = "|".join(
[
"not supported between instances of 'type' and 'type'",
"unsupported operand type",
]
)
with pytest.raises(error, match=msg):
ser.transform([op, "shift"])
with pytest.raises(error, match=msg):
ser.transform({"A": op, "B": "shift"})
with pytest.raises(error, match=msg):
ser.transform({"A": [op], "B": ["shift"]})
with pytest.raises(error, match=msg):
ser.transform({"A": [op, "shift"], "B": [op]})
def test_transform_partial_failure_valueerror():
# GH 40211
def noop(x):
return x
def raising_op(_):
raise ValueError
ser = Series(3 * [object])
msg = "Transform function failed"
with pytest.raises(ValueError, match=msg):
ser.transform([noop, raising_op])
with pytest.raises(ValueError, match=msg):
ser.transform({"A": raising_op, "B": noop})
with pytest.raises(ValueError, match=msg):
ser.transform({"A": [raising_op], "B": [noop]})
with pytest.raises(ValueError, match=msg):
ser.transform({"A": [noop, raising_op], "B": [noop]})
def test_demo():
# demonstration tests
s = Series(range(6), dtype="int64", name="series")
result = s.agg(["min", "max"])
expected = Series([0, 5], index=["min", "max"], name="series")
tm.assert_series_equal(result, expected)
result = s.agg({"foo": "min"})
expected = Series([0], index=["foo"], name="series")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("func", [str, lambda x: str(x)])
def test_apply_map_evaluate_lambdas_the_same(string_series, func, by_row):
# test that we are evaluating row-by-row first if by_row="compat"
# else vectorized evaluation
result = string_series.apply(func, by_row=by_row)
if by_row:
expected = string_series.map(func)
tm.assert_series_equal(result, expected)
else:
assert result == str(string_series)
def test_agg_evaluate_lambdas(string_series):
# GH53325
# in the future, the result will be a Series class.
with tm.assert_produces_warning(FutureWarning):
result = string_series.agg(lambda x: type(x))
assert isinstance(result, Series) and len(result) == len(string_series)
with tm.assert_produces_warning(FutureWarning):
result = string_series.agg(type)
assert isinstance(result, Series) and len(result) == len(string_series)
@pytest.mark.parametrize("op_name", ["agg", "apply"])
def test_with_nested_series(datetime_series, op_name):
# GH 2316
# .agg with a reducer and a transform, what to do
msg = "cannot aggregate"
warning = FutureWarning if op_name == "agg" else None
with tm.assert_produces_warning(warning, match=msg):
# GH52123
result = getattr(datetime_series, op_name)(
lambda x: Series([x, x**2], index=["x", "x^2"])
)
expected = DataFrame({"x": datetime_series, "x^2": datetime_series**2})
tm.assert_frame_equal(result, expected)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = datetime_series.agg(lambda x: Series([x, x**2], index=["x", "x^2"]))
tm.assert_frame_equal(result, expected)
def test_replicate_describe(string_series):
# this also tests a result set that is all scalars
expected = string_series.describe()
result = string_series.apply(
{
"count": "count",
"mean": "mean",
"std": "std",
"min": "min",
"25%": lambda x: x.quantile(0.25),
"50%": "median",
"75%": lambda x: x.quantile(0.75),
"max": "max",
},
)
tm.assert_series_equal(result, expected)
def test_reduce(string_series):
# reductions with named functions
result = string_series.agg(["sum", "mean"])
expected = Series(
[string_series.sum(), string_series.mean()],
["sum", "mean"],
name=string_series.name,
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"how, kwds",
[("agg", {}), ("apply", {"by_row": "compat"}), ("apply", {"by_row": False})],
)
def test_non_callable_aggregates(how, kwds):
# test agg using non-callable series attributes
# GH 39116 - expand to apply
s = Series([1, 2, None])
# Calling agg w/ just a string arg same as calling s.arg
result = getattr(s, how)("size", **kwds)
expected = s.size
assert result == expected
# test when mixed w/ callable reducers
result = getattr(s, how)(["size", "count", "mean"], **kwds)
expected = Series({"size": 3.0, "count": 2.0, "mean": 1.5})
tm.assert_series_equal(result, expected)
result = getattr(s, how)({"size": "size", "count": "count", "mean": "mean"}, **kwds)
tm.assert_series_equal(result, expected)
def test_series_apply_no_suffix_index(by_row):
# GH36189
s = Series([4] * 3)
result = s.apply(["sum", lambda x: x.sum(), lambda x: x.sum()], by_row=by_row)
expected = Series([12, 12, 12], index=["sum", "<lambda>", "<lambda>"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"dti,exp",
[
(
Series([1, 2], index=pd.DatetimeIndex([0, 31536000000])),
DataFrame(np.repeat([[1, 2]], 2, axis=0), dtype="int64"),
),
(
Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10),
name="ts",
),
DataFrame(np.repeat([[1, 2]], 10, axis=0), dtype="int64"),
),
],
)
@pytest.mark.parametrize("aware", [True, False])
def test_apply_series_on_date_time_index_aware_series(dti, exp, aware):
# GH 25959
# Calling apply on a localized time series should not cause an error
if aware:
index = dti.tz_localize("UTC").index
else:
index = dti.index
result = Series(index).apply(lambda x: Series([1, 2]))
tm.assert_frame_equal(result, exp)
@pytest.mark.parametrize(
"by_row, expected", [("compat", Series(np.ones(10), dtype="int64")), (False, 1)]
)
def test_apply_scalar_on_date_time_index_aware_series(by_row, expected):
# GH 25959
# Calling apply on a localized time series should not cause an error
series = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10, tz="UTC"),
)
result = Series(series.index).apply(lambda x: 1, by_row=by_row)
tm.assert_equal(result, expected)
def test_apply_to_timedelta(by_row):
list_of_valid_strings = ["00:00:01", "00:00:02"]
a = pd.to_timedelta(list_of_valid_strings)
b = Series(list_of_valid_strings).apply(pd.to_timedelta, by_row=by_row)
tm.assert_series_equal(Series(a), b)
list_of_strings = ["00:00:01", np.nan, pd.NaT, pd.NaT]
a = pd.to_timedelta(list_of_strings)
ser = Series(list_of_strings)
b = ser.apply(pd.to_timedelta, by_row=by_row)
tm.assert_series_equal(Series(a), b)
@pytest.mark.parametrize(
"ops, names",
[
([np.sum], ["sum"]),
([np.sum, np.mean], ["sum", "mean"]),
(np.array([np.sum]), ["sum"]),
(np.array([np.sum, np.mean]), ["sum", "mean"]),
],
)
@pytest.mark.parametrize(
"how, kwargs",
[["agg", {}], ["apply", {"by_row": "compat"}], ["apply", {"by_row": False}]],
)
def test_apply_listlike_reducer(string_series, ops, names, how, kwargs):
# GH 39140
expected = Series({name: op(string_series) for name, op in zip(names, ops)})
expected.name = "series"
warn = FutureWarning if how == "agg" else None
msg = f"using Series.[{'|'.join(names)}]"
with tm.assert_produces_warning(warn, match=msg):
result = getattr(string_series, how)(ops, **kwargs)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sum},
{"A": np.sum, "B": np.mean},
Series({"A": np.sum}),
Series({"A": np.sum, "B": np.mean}),
],
)
@pytest.mark.parametrize(
"how, kwargs",
[["agg", {}], ["apply", {"by_row": "compat"}], ["apply", {"by_row": False}]],
)
def test_apply_dictlike_reducer(string_series, ops, how, kwargs, by_row):
# GH 39140
expected = Series({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
warn = FutureWarning if how == "agg" else None
msg = "using Series.[sum|mean]"
with tm.assert_produces_warning(warn, match=msg):
result = getattr(string_series, how)(ops, **kwargs)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops, names",
[
([np.sqrt], ["sqrt"]),
([np.abs, np.sqrt], ["absolute", "sqrt"]),
(np.array([np.sqrt]), ["sqrt"]),
(np.array([np.abs, np.sqrt]), ["absolute", "sqrt"]),
],
)
def test_apply_listlike_transformer(string_series, ops, names, by_row):
# GH 39140
with np.errstate(all="ignore"):
expected = concat([op(string_series) for op in ops], axis=1)
expected.columns = names
result = string_series.apply(ops, by_row=by_row)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"ops, expected",
[
([lambda x: x], DataFrame({"<lambda>": [1, 2, 3]})),
([lambda x: x.sum()], Series([6], index=["<lambda>"])),
],
)
def test_apply_listlike_lambda(ops, expected, by_row):
# GH53400
ser = Series([1, 2, 3])
result = ser.apply(ops, by_row=by_row)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"ops",
[
{"A": np.sqrt},
{"A": np.sqrt, "B": np.exp},
Series({"A": np.sqrt}),
Series({"A": np.sqrt, "B": np.exp}),
],
)
def test_apply_dictlike_transformer(string_series, ops, by_row):
# GH 39140
with np.errstate(all="ignore"):
expected = concat({name: op(string_series) for name, op in ops.items()})
expected.name = string_series.name
result = string_series.apply(ops, by_row=by_row)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ops, expected",
[
(
{"a": lambda x: x},
Series([1, 2, 3], index=MultiIndex.from_arrays([["a"] * 3, range(3)])),
),
({"a": lambda x: x.sum()}, Series([6], index=["a"])),
],
)
def test_apply_dictlike_lambda(ops, by_row, expected):
# GH53400
ser = Series([1, 2, 3])
result = ser.apply(ops, by_row=by_row)
tm.assert_equal(result, expected)
def test_apply_retains_column_name(by_row):
# GH 16380
df = DataFrame({"x": range(3)}, Index(range(3), name="x"))
result = df.x.apply(lambda x: Series(range(x + 1), Index(range(x + 1), name="y")))
expected = DataFrame(
[[0.0, np.nan, np.nan], [0.0, 1.0, np.nan], [0.0, 1.0, 2.0]],
columns=Index(range(3), name="y"),
index=Index(range(3), name="x"),
)
tm.assert_frame_equal(result, expected)
def test_apply_type():
# GH 46719
s = Series([3, "string", float], index=["a", "b", "c"])
result = s.apply(type)
expected = Series([int, str, type], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_series_apply_unpack_nested_data():
# GH#55189
ser = Series([[1, 2, 3], [4, 5, 6, 7]])
result = ser.apply(lambda x: Series(x))
expected = DataFrame({0: [1.0, 4.0], 1: [2.0, 5.0], 2: [3.0, 6.0], 3: [np.nan, 7]})
tm.assert_frame_equal(result, expected)