You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
1.9 KiB
61 lines
1.9 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.arrays import BooleanArray
|
|
from pandas.tests.arrays.masked_shared import ComparisonOps
|
|
|
|
|
|
@pytest.fixture
|
|
def data():
|
|
"""Fixture returning boolean array with valid and missing data"""
|
|
return pd.array(
|
|
[True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False],
|
|
dtype="boolean",
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def dtype():
|
|
"""Fixture returning BooleanDtype"""
|
|
return pd.BooleanDtype()
|
|
|
|
|
|
class TestComparisonOps(ComparisonOps):
|
|
def test_compare_scalar(self, data, comparison_op):
|
|
self._compare_other(data, comparison_op, True)
|
|
|
|
def test_compare_array(self, data, comparison_op):
|
|
other = pd.array([True] * len(data), dtype="boolean")
|
|
self._compare_other(data, comparison_op, other)
|
|
other = np.array([True] * len(data))
|
|
self._compare_other(data, comparison_op, other)
|
|
other = pd.Series([True] * len(data))
|
|
self._compare_other(data, comparison_op, other)
|
|
|
|
@pytest.mark.parametrize("other", [True, False, pd.NA])
|
|
def test_scalar(self, other, comparison_op, dtype):
|
|
ComparisonOps.test_scalar(self, other, comparison_op, dtype)
|
|
|
|
def test_array(self, comparison_op):
|
|
op = comparison_op
|
|
a = pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
|
b = pd.array([True, False, None] * 3, dtype="boolean")
|
|
|
|
result = op(a, b)
|
|
|
|
values = op(a._data, b._data)
|
|
mask = a._mask | b._mask
|
|
expected = BooleanArray(values, mask)
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
# ensure we haven't mutated anything inplace
|
|
result[0] = None
|
|
tm.assert_extension_array_equal(
|
|
a, pd.array([True] * 3 + [False] * 3 + [None] * 3, dtype="boolean")
|
|
)
|
|
tm.assert_extension_array_equal(
|
|
b, pd.array([True, False, None] * 3, dtype="boolean")
|
|
)
|