You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

326 lines
12 KiB

import numpy as np
import pytest
import pandas as pd
import pandas._testing as tm
from pandas.arrays import BooleanArray
from pandas.core.arrays.boolean import coerce_to_array
def test_boolean_array_constructor():
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(values, mask)
expected = pd.array([True, False, True, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
with pytest.raises(TypeError, match="values should be boolean numpy array"):
BooleanArray(values.tolist(), mask)
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
BooleanArray(values, mask.tolist())
with pytest.raises(TypeError, match="values should be boolean numpy array"):
BooleanArray(values.astype(int), mask)
with pytest.raises(TypeError, match="mask should be boolean numpy array"):
BooleanArray(values, None)
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
BooleanArray(values.reshape(1, -1), mask)
with pytest.raises(ValueError, match="values.shape must match mask.shape"):
BooleanArray(values, mask.reshape(1, -1))
def test_boolean_array_constructor_copy():
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(values, mask)
assert result._data is values
assert result._mask is mask
result = BooleanArray(values, mask, copy=True)
assert result._data is not values
assert result._mask is not mask
def test_to_boolean_array():
expected = BooleanArray(
np.array([True, False, True]), np.array([False, False, False])
)
result = pd.array([True, False, True], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = pd.array(np.array([True, False, True]), dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean")
tm.assert_extension_array_equal(result, expected)
# with missing values
expected = BooleanArray(
np.array([True, False, True]), np.array([False, False, True])
)
result = pd.array([True, False, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean")
tm.assert_extension_array_equal(result, expected)
def test_to_boolean_array_all_none():
expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True]))
result = pd.array([None, None, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"a, b",
[
([True, False, None, np.nan, pd.NA], [True, False, None, None, None]),
([True, np.nan], [True, None]),
([True, pd.NA], [True, None]),
([np.nan, np.nan], [None, None]),
(np.array([np.nan, np.nan], dtype=float), [None, None]),
],
)
def test_to_boolean_array_missing_indicators(a, b):
result = pd.array(a, dtype="boolean")
expected = pd.array(b, dtype="boolean")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
["foo", "bar"],
["1", "2"],
# "foo",
[1, 2],
[1.0, 2.0],
pd.date_range("20130101", periods=2),
np.array(["foo"]),
np.array([1, 2]),
np.array([1.0, 2.0]),
[np.nan, {"a": 1}],
],
)
def test_to_boolean_array_error(values):
# error in converting existing arrays to BooleanArray
msg = "Need to pass bool-like value"
with pytest.raises(TypeError, match=msg):
pd.array(values, dtype="boolean")
def test_to_boolean_array_from_integer_array():
result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean")
expected = pd.array([True, False, True, False], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
# with missing values
result = pd.array(np.array([1, 0, 1, None]), dtype="boolean")
expected = pd.array([True, False, True, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
def test_to_boolean_array_from_float_array():
result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean")
expected = pd.array([True, False, True, False], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
# with missing values
result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean")
expected = pd.array([True, False, True, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
def test_to_boolean_array_integer_like():
# integers of 0's and 1's
result = pd.array([1, 0, 1, 0], dtype="boolean")
expected = pd.array([True, False, True, False], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
# with missing values
result = pd.array([1, 0, 1, None], dtype="boolean")
expected = pd.array([True, False, True, None], dtype="boolean")
tm.assert_extension_array_equal(result, expected)
def test_coerce_to_array():
# TODO this is currently not public API
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(*coerce_to_array(values, mask=mask))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is values
assert result._mask is mask
result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True))
expected = BooleanArray(values, mask)
tm.assert_extension_array_equal(result, expected)
assert result._data is not values
assert result._mask is not mask
# mixed missing from values and mask
values = [True, False, None, False]
mask = np.array([False, False, False, True], dtype="bool")
result = BooleanArray(*coerce_to_array(values, mask=mask))
expected = BooleanArray(
np.array([True, False, True, True]), np.array([False, False, True, True])
)
tm.assert_extension_array_equal(result, expected)
result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask))
tm.assert_extension_array_equal(result, expected)
result = BooleanArray(*coerce_to_array(values, mask=mask.tolist()))
tm.assert_extension_array_equal(result, expected)
# raise errors for wrong dimension
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
# passing 2D values is OK as long as no mask
coerce_to_array(values.reshape(1, -1))
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
coerce_to_array(values.reshape(1, -1), mask=mask)
with pytest.raises(ValueError, match="values.shape and mask.shape must match"):
coerce_to_array(values, mask=mask.reshape(1, -1))
def test_coerce_to_array_from_boolean_array():
# passing BooleanArray to coerce_to_array
values = np.array([True, False, True, False], dtype="bool")
mask = np.array([False, False, False, True], dtype="bool")
arr = BooleanArray(values, mask)
result = BooleanArray(*coerce_to_array(arr))
tm.assert_extension_array_equal(result, arr)
# no copy
assert result._data is arr._data
assert result._mask is arr._mask
result = BooleanArray(*coerce_to_array(arr), copy=True)
tm.assert_extension_array_equal(result, arr)
assert result._data is not arr._data
assert result._mask is not arr._mask
with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"):
coerce_to_array(arr, mask=mask)
def test_coerce_to_numpy_array():
# with missing values -> object dtype
arr = pd.array([True, False, None], dtype="boolean")
result = np.array(arr)
expected = np.array([True, False, pd.NA], dtype="object")
tm.assert_numpy_array_equal(result, expected)
# also with no missing values -> object dtype
arr = pd.array([True, False, True], dtype="boolean")
result = np.array(arr)
expected = np.array([True, False, True], dtype="bool")
tm.assert_numpy_array_equal(result, expected)
# force bool dtype
result = np.array(arr, dtype="bool")
expected = np.array([True, False, True], dtype="bool")
tm.assert_numpy_array_equal(result, expected)
# with missing values will raise error
arr = pd.array([True, False, None], dtype="boolean")
msg = (
"cannot convert to 'bool'-dtype NumPy array with missing values. "
"Specify an appropriate 'na_value' for this dtype."
)
with pytest.raises(ValueError, match=msg):
np.array(arr, dtype="bool")
def test_to_boolean_array_from_strings():
result = BooleanArray._from_sequence_of_strings(
np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object),
dtype="boolean",
)
expected = BooleanArray(
np.array([True, False, True, True, False, False, False]),
np.array([False, False, False, False, False, False, True]),
)
tm.assert_extension_array_equal(result, expected)
def test_to_boolean_array_from_strings_invalid_string():
with pytest.raises(ValueError, match="cannot be cast"):
BooleanArray._from_sequence_of_strings(["donkey"], dtype="boolean")
@pytest.mark.parametrize("box", [True, False], ids=["series", "array"])
def test_to_numpy(box):
con = pd.Series if box else pd.array
# default (with or without missing values) -> object dtype
arr = con([True, False, True], dtype="boolean")
result = arr.to_numpy()
expected = np.array([True, False, True], dtype="bool")
tm.assert_numpy_array_equal(result, expected)
arr = con([True, False, None], dtype="boolean")
result = arr.to_numpy()
expected = np.array([True, False, pd.NA], dtype="object")
tm.assert_numpy_array_equal(result, expected)
arr = con([True, False, None], dtype="boolean")
result = arr.to_numpy(dtype="str")
expected = np.array([True, False, pd.NA], dtype=f"{tm.ENDIAN}U5")
tm.assert_numpy_array_equal(result, expected)
# no missing values -> can convert to bool, otherwise raises
arr = con([True, False, True], dtype="boolean")
result = arr.to_numpy(dtype="bool")
expected = np.array([True, False, True], dtype="bool")
tm.assert_numpy_array_equal(result, expected)
arr = con([True, False, None], dtype="boolean")
with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"):
result = arr.to_numpy(dtype="bool")
# specify dtype and na_value
arr = con([True, False, None], dtype="boolean")
result = arr.to_numpy(dtype=object, na_value=None)
expected = np.array([True, False, None], dtype="object")
tm.assert_numpy_array_equal(result, expected)
result = arr.to_numpy(dtype=bool, na_value=False)
expected = np.array([True, False, False], dtype="bool")
tm.assert_numpy_array_equal(result, expected)
result = arr.to_numpy(dtype="int64", na_value=-99)
expected = np.array([1, 0, -99], dtype="int64")
tm.assert_numpy_array_equal(result, expected)
result = arr.to_numpy(dtype="float64", na_value=np.nan)
expected = np.array([1, 0, np.nan], dtype="float64")
tm.assert_numpy_array_equal(result, expected)
# converting to int or float without specifying na_value raises
with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"):
arr.to_numpy(dtype="int64")
def test_to_numpy_copy():
# to_numpy can be zero-copy if no missing values
arr = pd.array([True, False, True], dtype="boolean")
result = arr.to_numpy(dtype=bool)
result[0] = False
tm.assert_extension_array_equal(
arr, pd.array([False, False, True], dtype="boolean")
)
arr = pd.array([True, False, True], dtype="boolean")
result = arr.to_numpy(dtype=bool, copy=True)
result[0] = False
tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean"))