You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
70 lines
2.3 KiB
70 lines
2.3 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"to_concat_dtypes, result_dtype",
|
|
[
|
|
(["Int64", "Int64"], "Int64"),
|
|
(["UInt64", "UInt64"], "UInt64"),
|
|
(["Int8", "Int8"], "Int8"),
|
|
(["Int8", "Int16"], "Int16"),
|
|
(["UInt8", "Int8"], "Int16"),
|
|
(["Int32", "UInt32"], "Int64"),
|
|
(["Int64", "UInt64"], "Float64"),
|
|
(["Int64", "boolean"], "object"),
|
|
(["UInt8", "boolean"], "object"),
|
|
],
|
|
)
|
|
def test_concat_series(to_concat_dtypes, result_dtype):
|
|
# we expect the same dtypes as we would get with non-masked inputs,
|
|
# just masked where available.
|
|
|
|
result = pd.concat([pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes])
|
|
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
|
|
result_dtype
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# order doesn't matter for result
|
|
result = pd.concat(
|
|
[pd.Series([0, 1, pd.NA], dtype=t) for t in to_concat_dtypes[::-1]]
|
|
)
|
|
expected = pd.concat([pd.Series([0, 1, pd.NA], dtype=object)] * 2).astype(
|
|
result_dtype
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"to_concat_dtypes, result_dtype",
|
|
[
|
|
(["Int64", "int64"], "Int64"),
|
|
(["UInt64", "uint64"], "UInt64"),
|
|
(["Int8", "int8"], "Int8"),
|
|
(["Int8", "int16"], "Int16"),
|
|
(["UInt8", "int8"], "Int16"),
|
|
(["Int32", "uint32"], "Int64"),
|
|
(["Int64", "uint64"], "Float64"),
|
|
(["Int64", "bool"], "object"),
|
|
(["UInt8", "bool"], "object"),
|
|
],
|
|
)
|
|
def test_concat_series_with_numpy(to_concat_dtypes, result_dtype):
|
|
# we expect the same dtypes as we would get with non-masked inputs,
|
|
# just masked where available.
|
|
|
|
s1 = pd.Series([0, 1, pd.NA], dtype=to_concat_dtypes[0])
|
|
s2 = pd.Series(np.array([0, 1], dtype=to_concat_dtypes[1]))
|
|
result = pd.concat([s1, s2], ignore_index=True)
|
|
expected = pd.Series([0, 1, pd.NA, 0, 1], dtype=object).astype(result_dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# order doesn't matter for result
|
|
result = pd.concat([s2, s1], ignore_index=True)
|
|
expected = pd.Series([0, 1, 0, 1, pd.NA], dtype=object).astype(result_dtype)
|
|
tm.assert_series_equal(result, expected)
|