You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
5.5 KiB
143 lines
5.5 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.api.extensions import ExtensionArray
|
|
from pandas.core.internals.blocks import EABackedBlock
|
|
|
|
|
|
class BaseConstructorsTests:
|
|
def test_from_sequence_from_cls(self, data):
|
|
result = type(data)._from_sequence(data, dtype=data.dtype)
|
|
tm.assert_extension_array_equal(result, data)
|
|
|
|
data = data[:0]
|
|
result = type(data)._from_sequence(data, dtype=data.dtype)
|
|
tm.assert_extension_array_equal(result, data)
|
|
|
|
def test_array_from_scalars(self, data):
|
|
scalars = [data[0], data[1], data[2]]
|
|
result = data._from_sequence(scalars, dtype=data.dtype)
|
|
assert isinstance(result, type(data))
|
|
|
|
def test_series_constructor(self, data):
|
|
result = pd.Series(data, copy=False)
|
|
assert result.dtype == data.dtype
|
|
assert len(result) == len(data)
|
|
if hasattr(result._mgr, "blocks"):
|
|
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
|
assert result._mgr.array is data
|
|
|
|
# Series[EA] is unboxed / boxed correctly
|
|
result2 = pd.Series(result)
|
|
assert result2.dtype == data.dtype
|
|
if hasattr(result._mgr, "blocks"):
|
|
assert isinstance(result2._mgr.blocks[0], EABackedBlock)
|
|
|
|
def test_series_constructor_no_data_with_index(self, dtype, na_value):
|
|
result = pd.Series(index=[1, 2, 3], dtype=dtype)
|
|
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# GH 33559 - empty index
|
|
result = pd.Series(index=[], dtype=dtype)
|
|
expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_series_constructor_scalar_na_with_index(self, dtype, na_value):
|
|
result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype)
|
|
expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_series_constructor_scalar_with_index(self, data, dtype):
|
|
scalar = data[0]
|
|
result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype)
|
|
expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = pd.Series(scalar, index=["foo"], dtype=dtype)
|
|
expected = pd.Series([scalar], index=["foo"], dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("from_series", [True, False])
|
|
def test_dataframe_constructor_from_dict(self, data, from_series):
|
|
if from_series:
|
|
data = pd.Series(data)
|
|
result = pd.DataFrame({"A": data})
|
|
assert result.dtypes["A"] == data.dtype
|
|
assert result.shape == (len(data), 1)
|
|
if hasattr(result._mgr, "blocks"):
|
|
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
|
assert isinstance(result._mgr.arrays[0], ExtensionArray)
|
|
|
|
def test_dataframe_from_series(self, data):
|
|
result = pd.DataFrame(pd.Series(data))
|
|
assert result.dtypes[0] == data.dtype
|
|
assert result.shape == (len(data), 1)
|
|
if hasattr(result._mgr, "blocks"):
|
|
assert isinstance(result._mgr.blocks[0], EABackedBlock)
|
|
assert isinstance(result._mgr.arrays[0], ExtensionArray)
|
|
|
|
def test_series_given_mismatched_index_raises(self, data):
|
|
msg = r"Length of values \(3\) does not match length of index \(5\)"
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Series(data[:3], index=[0, 1, 2, 3, 4])
|
|
|
|
def test_from_dtype(self, data):
|
|
# construct from our dtype & string dtype
|
|
dtype = data.dtype
|
|
|
|
expected = pd.Series(data)
|
|
result = pd.Series(list(data), dtype=dtype)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = pd.Series(list(data), dtype=str(dtype))
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# gh-30280
|
|
|
|
expected = pd.DataFrame(data).astype(dtype)
|
|
result = pd.DataFrame(list(data), dtype=dtype)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = pd.DataFrame(list(data), dtype=str(dtype))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_pandas_array(self, data):
|
|
# pd.array(extension_array) should be idempotent...
|
|
result = pd.array(data)
|
|
tm.assert_extension_array_equal(result, data)
|
|
|
|
def test_pandas_array_dtype(self, data):
|
|
# ... but specifying dtype will override idempotency
|
|
result = pd.array(data, dtype=np.dtype(object))
|
|
expected = pd.arrays.NumpyExtensionArray(np.asarray(data, dtype=object))
|
|
tm.assert_equal(result, expected)
|
|
|
|
def test_construct_empty_dataframe(self, dtype):
|
|
# GH 33623
|
|
result = pd.DataFrame(columns=["a"], dtype=dtype)
|
|
expected = pd.DataFrame(
|
|
{"a": pd.array([], dtype=dtype)}, index=pd.RangeIndex(0)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_empty(self, dtype):
|
|
cls = dtype.construct_array_type()
|
|
result = cls._empty((4,), dtype=dtype)
|
|
assert isinstance(result, cls)
|
|
assert result.dtype == dtype
|
|
assert result.shape == (4,)
|
|
|
|
# GH#19600 method on ExtensionDtype
|
|
result2 = dtype.empty((4,))
|
|
assert isinstance(result2, cls)
|
|
assert result2.dtype == dtype
|
|
assert result2.shape == (4,)
|
|
|
|
result2 = dtype.empty(4)
|
|
assert isinstance(result2, cls)
|
|
assert result2.dtype == dtype
|
|
assert result2.shape == (4,)
|