You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
14 KiB
418 lines
14 KiB
"""
|
|
This file contains a minimal set of tests for compliance with the extension
|
|
array interface test suite, and should contain no other tests.
|
|
The test suite for the full functionality of the array is located in
|
|
`pandas/tests/arrays/`.
|
|
|
|
The tests in this file are inherited from the BaseExtensionTests, and only
|
|
minimal tweaks should be applied to get the tests passing (by overwriting a
|
|
parent method).
|
|
|
|
Additional tests should either be added to one of the BaseExtensionTests
|
|
classes (if they are relevant for the extension interface for all dtypes), or
|
|
be added to the array-specific tests in `pandas/tests/arrays/`.
|
|
|
|
"""
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import (
|
|
IS64,
|
|
is_platform_windows,
|
|
)
|
|
from pandas.compat.numpy import np_version_gt2
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_float_dtype,
|
|
is_signed_integer_dtype,
|
|
is_unsigned_integer_dtype,
|
|
)
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays.boolean import BooleanDtype
|
|
from pandas.core.arrays.floating import (
|
|
Float32Dtype,
|
|
Float64Dtype,
|
|
)
|
|
from pandas.core.arrays.integer import (
|
|
Int8Dtype,
|
|
Int16Dtype,
|
|
Int32Dtype,
|
|
Int64Dtype,
|
|
UInt8Dtype,
|
|
UInt16Dtype,
|
|
UInt32Dtype,
|
|
UInt64Dtype,
|
|
)
|
|
from pandas.tests.extension import base
|
|
|
|
is_windows_or_32bit = (is_platform_windows() and not np_version_gt2) or not IS64
|
|
|
|
pytestmark = [
|
|
pytest.mark.filterwarnings(
|
|
"ignore:invalid value encountered in divide:RuntimeWarning"
|
|
),
|
|
pytest.mark.filterwarnings("ignore:Mean of empty slice:RuntimeWarning"),
|
|
# overflow only relevant for Floating dtype cases cases
|
|
pytest.mark.filterwarnings("ignore:overflow encountered in reduce:RuntimeWarning"),
|
|
]
|
|
|
|
|
|
def make_data():
|
|
return list(range(1, 9)) + [pd.NA] + list(range(10, 98)) + [pd.NA] + [99, 100]
|
|
|
|
|
|
def make_float_data():
|
|
return (
|
|
list(np.arange(0.1, 0.9, 0.1))
|
|
+ [pd.NA]
|
|
+ list(np.arange(1, 9.8, 0.1))
|
|
+ [pd.NA]
|
|
+ [9.9, 10.0]
|
|
)
|
|
|
|
|
|
def make_bool_data():
|
|
return [True, False] * 4 + [np.nan] + [True, False] * 44 + [np.nan] + [True, False]
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
Int8Dtype,
|
|
Int16Dtype,
|
|
Int32Dtype,
|
|
Int64Dtype,
|
|
UInt8Dtype,
|
|
UInt16Dtype,
|
|
UInt32Dtype,
|
|
UInt64Dtype,
|
|
Float32Dtype,
|
|
Float64Dtype,
|
|
BooleanDtype,
|
|
]
|
|
)
|
|
def dtype(request):
|
|
return request.param()
|
|
|
|
|
|
@pytest.fixture
|
|
def data(dtype):
|
|
if dtype.kind == "f":
|
|
data = make_float_data()
|
|
elif dtype.kind == "b":
|
|
data = make_bool_data()
|
|
else:
|
|
data = make_data()
|
|
return pd.array(data, dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_twos(dtype):
|
|
if dtype.kind == "b":
|
|
return pd.array(np.ones(100), dtype=dtype)
|
|
return pd.array(np.ones(100) * 2, dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing(dtype):
|
|
if dtype.kind == "f":
|
|
return pd.array([pd.NA, 0.1], dtype=dtype)
|
|
elif dtype.kind == "b":
|
|
return pd.array([np.nan, True], dtype=dtype)
|
|
return pd.array([pd.NA, 1], dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_sorting(dtype):
|
|
if dtype.kind == "f":
|
|
return pd.array([0.1, 0.2, 0.0], dtype=dtype)
|
|
elif dtype.kind == "b":
|
|
return pd.array([True, True, False], dtype=dtype)
|
|
return pd.array([1, 2, 0], dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing_for_sorting(dtype):
|
|
if dtype.kind == "f":
|
|
return pd.array([0.1, pd.NA, 0.0], dtype=dtype)
|
|
elif dtype.kind == "b":
|
|
return pd.array([True, np.nan, False], dtype=dtype)
|
|
return pd.array([1, pd.NA, 0], dtype=dtype)
|
|
|
|
|
|
@pytest.fixture
|
|
def na_cmp():
|
|
# we are pd.NA
|
|
return lambda x, y: x is pd.NA and y is pd.NA
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_grouping(dtype):
|
|
if dtype.kind == "f":
|
|
b = 0.1
|
|
a = 0.0
|
|
c = 0.2
|
|
elif dtype.kind == "b":
|
|
b = True
|
|
a = False
|
|
c = b
|
|
else:
|
|
b = 1
|
|
a = 0
|
|
c = 2
|
|
|
|
na = pd.NA
|
|
return pd.array([b, b, na, na, a, a, b, c], dtype=dtype)
|
|
|
|
|
|
class TestMaskedArrays(base.ExtensionTests):
|
|
@pytest.mark.parametrize("na_action", [None, "ignore"])
|
|
def test_map(self, data_missing, na_action):
|
|
result = data_missing.map(lambda x: x, na_action=na_action)
|
|
if data_missing.dtype == Float32Dtype():
|
|
# map roundtrips through objects, which converts to float64
|
|
expected = data_missing.to_numpy(dtype="float64", na_value=np.nan)
|
|
else:
|
|
expected = data_missing.to_numpy()
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_map_na_action_ignore(self, data_missing_for_sorting):
|
|
zero = data_missing_for_sorting[2]
|
|
result = data_missing_for_sorting.map(lambda x: zero, na_action="ignore")
|
|
if data_missing_for_sorting.dtype.kind == "b":
|
|
expected = np.array([False, pd.NA, False], dtype=object)
|
|
else:
|
|
expected = np.array([zero, np.nan, zero])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def _get_expected_exception(self, op_name, obj, other):
|
|
try:
|
|
dtype = tm.get_dtype(obj)
|
|
except AttributeError:
|
|
# passed arguments reversed
|
|
dtype = tm.get_dtype(other)
|
|
|
|
if dtype.kind == "b":
|
|
if op_name.strip("_").lstrip("r") in ["pow", "truediv", "floordiv"]:
|
|
# match behavior with non-masked bool dtype
|
|
return NotImplementedError
|
|
elif op_name in ["__sub__", "__rsub__"]:
|
|
# exception message would include "numpy boolean subtract""
|
|
return TypeError
|
|
return None
|
|
return None
|
|
|
|
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
|
|
sdtype = tm.get_dtype(obj)
|
|
expected = pointwise_result
|
|
|
|
if op_name in ("eq", "ne", "le", "ge", "lt", "gt"):
|
|
return expected.astype("boolean")
|
|
|
|
if sdtype.kind in "iu":
|
|
if op_name in ("__rtruediv__", "__truediv__", "__div__"):
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings(
|
|
"ignore",
|
|
"Downcasting object dtype arrays",
|
|
category=FutureWarning,
|
|
)
|
|
filled = expected.fillna(np.nan)
|
|
expected = filled.astype("Float64")
|
|
else:
|
|
# combine method result in 'biggest' (int64) dtype
|
|
expected = expected.astype(sdtype)
|
|
elif sdtype.kind == "b":
|
|
if op_name in (
|
|
"__floordiv__",
|
|
"__rfloordiv__",
|
|
"__pow__",
|
|
"__rpow__",
|
|
"__mod__",
|
|
"__rmod__",
|
|
):
|
|
# combine keeps boolean type
|
|
expected = expected.astype("Int8")
|
|
|
|
elif op_name in ("__truediv__", "__rtruediv__"):
|
|
# combine with bools does not generate the correct result
|
|
# (numpy behaviour for div is to regard the bools as numeric)
|
|
op = self.get_op_from_name(op_name)
|
|
expected = self._combine(obj.astype(float), other, op)
|
|
expected = expected.astype("Float64")
|
|
|
|
if op_name == "__rpow__":
|
|
# for rpow, combine does not propagate NaN
|
|
result = getattr(obj, op_name)(other)
|
|
expected[result.isna()] = np.nan
|
|
else:
|
|
# combine method result in 'biggest' (float64) dtype
|
|
expected = expected.astype(sdtype)
|
|
return expected
|
|
|
|
def test_divmod_series_array(self, data, data_for_twos, request):
|
|
if data.dtype.kind == "b":
|
|
mark = pytest.mark.xfail(
|
|
reason="Inconsistency between floordiv and divmod; we raise for "
|
|
"floordiv but not for divmod. This matches what we do for "
|
|
"non-masked bool dtype."
|
|
)
|
|
request.applymarker(mark)
|
|
super().test_divmod_series_array(data, data_for_twos)
|
|
|
|
def test_combine_le(self, data_repeated):
|
|
# TODO: patching self is a bad pattern here
|
|
orig_data1, orig_data2 = data_repeated(2)
|
|
if orig_data1.dtype.kind == "b":
|
|
self._combine_le_expected_dtype = "boolean"
|
|
else:
|
|
# TODO: can we make this boolean?
|
|
self._combine_le_expected_dtype = object
|
|
super().test_combine_le(data_repeated)
|
|
|
|
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
|
if op_name in ["any", "all"] and ser.dtype.kind != "b":
|
|
pytest.skip(reason="Tested in tests/reductions/test_reductions.py")
|
|
return True
|
|
|
|
def check_reduce(self, ser: pd.Series, op_name: str, skipna: bool):
|
|
# overwrite to ensure pd.NA is tested instead of np.nan
|
|
# https://github.com/pandas-dev/pandas/issues/30958
|
|
|
|
cmp_dtype = "int64"
|
|
if ser.dtype.kind == "f":
|
|
# Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has
|
|
# no attribute "numpy_dtype"
|
|
cmp_dtype = ser.dtype.numpy_dtype # type: ignore[union-attr]
|
|
elif ser.dtype.kind == "b":
|
|
if op_name in ["min", "max"]:
|
|
cmp_dtype = "bool"
|
|
|
|
# TODO: prod with integer dtypes does *not* match the result we would
|
|
# get if we used object for cmp_dtype. In that cae the object result
|
|
# is a large integer while the non-object case overflows and returns 0
|
|
alt = ser.dropna().astype(cmp_dtype)
|
|
if op_name == "count":
|
|
result = getattr(ser, op_name)()
|
|
expected = getattr(alt, op_name)()
|
|
else:
|
|
result = getattr(ser, op_name)(skipna=skipna)
|
|
expected = getattr(alt, op_name)(skipna=skipna)
|
|
if not skipna and ser.isna().any() and op_name not in ["any", "all"]:
|
|
expected = pd.NA
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
def _get_expected_reduction_dtype(self, arr, op_name: str, skipna: bool):
|
|
if is_float_dtype(arr.dtype):
|
|
cmp_dtype = arr.dtype.name
|
|
elif op_name in ["mean", "median", "var", "std", "skew"]:
|
|
cmp_dtype = "Float64"
|
|
elif op_name in ["max", "min"]:
|
|
cmp_dtype = arr.dtype.name
|
|
elif arr.dtype in ["Int64", "UInt64"]:
|
|
cmp_dtype = arr.dtype.name
|
|
elif is_signed_integer_dtype(arr.dtype):
|
|
# TODO: Why does Window Numpy 2.0 dtype depend on skipna?
|
|
cmp_dtype = (
|
|
"Int32"
|
|
if (is_platform_windows() and (not np_version_gt2 or not skipna))
|
|
or not IS64
|
|
else "Int64"
|
|
)
|
|
elif is_unsigned_integer_dtype(arr.dtype):
|
|
cmp_dtype = (
|
|
"UInt32"
|
|
if (is_platform_windows() and (not np_version_gt2 or not skipna))
|
|
or not IS64
|
|
else "UInt64"
|
|
)
|
|
elif arr.dtype.kind == "b":
|
|
if op_name in ["mean", "median", "var", "std", "skew"]:
|
|
cmp_dtype = "Float64"
|
|
elif op_name in ["min", "max"]:
|
|
cmp_dtype = "boolean"
|
|
elif op_name in ["sum", "prod"]:
|
|
cmp_dtype = (
|
|
"Int32"
|
|
if (is_platform_windows() and (not np_version_gt2 or not skipna))
|
|
or not IS64
|
|
else "Int64"
|
|
)
|
|
else:
|
|
raise TypeError("not supposed to reach this")
|
|
else:
|
|
raise TypeError("not supposed to reach this")
|
|
return cmp_dtype
|
|
|
|
def _supports_accumulation(self, ser: pd.Series, op_name: str) -> bool:
|
|
return True
|
|
|
|
def check_accumulate(self, ser: pd.Series, op_name: str, skipna: bool):
|
|
# overwrite to ensure pd.NA is tested instead of np.nan
|
|
# https://github.com/pandas-dev/pandas/issues/30958
|
|
length = 64
|
|
if is_windows_or_32bit:
|
|
# Item "ExtensionDtype" of "Union[dtype[Any], ExtensionDtype]" has
|
|
# no attribute "itemsize"
|
|
if not ser.dtype.itemsize == 8: # type: ignore[union-attr]
|
|
length = 32
|
|
|
|
if ser.dtype.name.startswith("U"):
|
|
expected_dtype = f"UInt{length}"
|
|
elif ser.dtype.name.startswith("I"):
|
|
expected_dtype = f"Int{length}"
|
|
elif ser.dtype.name.startswith("F"):
|
|
# Incompatible types in assignment (expression has type
|
|
# "Union[dtype[Any], ExtensionDtype]", variable has type "str")
|
|
expected_dtype = ser.dtype # type: ignore[assignment]
|
|
elif ser.dtype.kind == "b":
|
|
if op_name in ("cummin", "cummax"):
|
|
expected_dtype = "boolean"
|
|
else:
|
|
expected_dtype = f"Int{length}"
|
|
|
|
if expected_dtype == "Float32" and op_name == "cumprod" and skipna:
|
|
# TODO: xfail?
|
|
pytest.skip(
|
|
f"Float32 precision lead to large differences with op {op_name} "
|
|
f"and skipna={skipna}"
|
|
)
|
|
|
|
if op_name == "cumsum":
|
|
result = getattr(ser, op_name)(skipna=skipna)
|
|
expected = pd.Series(
|
|
pd.array(
|
|
getattr(ser.astype("float64"), op_name)(skipna=skipna),
|
|
dtype=expected_dtype,
|
|
)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
elif op_name in ["cummax", "cummin"]:
|
|
result = getattr(ser, op_name)(skipna=skipna)
|
|
expected = pd.Series(
|
|
pd.array(
|
|
getattr(ser.astype("float64"), op_name)(skipna=skipna),
|
|
dtype=ser.dtype,
|
|
)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
elif op_name == "cumprod":
|
|
result = getattr(ser[:12], op_name)(skipna=skipna)
|
|
expected = pd.Series(
|
|
pd.array(
|
|
getattr(ser[:12].astype("float64"), op_name)(skipna=skipna),
|
|
dtype=expected_dtype,
|
|
)
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
else:
|
|
raise NotImplementedError(f"{op_name} not supported")
|
|
|
|
|
|
class Test2DCompat(base.Dim2CompatTests):
|
|
pass
|