You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
418 lines
14 KiB
418 lines
14 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Categorical,
|
|
DataFrame,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDataFrameDescribe:
|
|
def test_describe_bool_in_mixed_frame(self):
|
|
df = DataFrame(
|
|
{
|
|
"string_data": ["a", "b", "c", "d", "e"],
|
|
"bool_data": [True, True, False, False, False],
|
|
"int_data": [10, 20, 30, 40, 50],
|
|
}
|
|
)
|
|
|
|
# Integer data are included in .describe() output,
|
|
# Boolean and string data are not.
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"int_data": [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Top value is a boolean value that is False
|
|
result = df.describe(include=["bool"])
|
|
|
|
expected = DataFrame(
|
|
{"bool_data": [5, 2, False, 3]}, index=["count", "unique", "top", "freq"]
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_empty_object(self):
|
|
# GH#27183
|
|
df = DataFrame({"A": [None, None]}, dtype=object)
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"A": [0, 0, np.nan, np.nan]},
|
|
dtype=object,
|
|
index=["count", "unique", "top", "freq"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df.iloc[:0].describe()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_bool_frame(self):
|
|
# GH#13891
|
|
df = DataFrame(
|
|
{
|
|
"bool_data_1": [False, False, True, True],
|
|
"bool_data_2": [False, True, True, True],
|
|
}
|
|
)
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"bool_data_1": [4, 2, False, 2], "bool_data_2": [4, 2, True, 3]},
|
|
index=["count", "unique", "top", "freq"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = DataFrame(
|
|
{
|
|
"bool_data": [False, False, True, True, False],
|
|
"int_data": [0, 1, 2, 3, 4],
|
|
}
|
|
)
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"int_data": [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
df = DataFrame(
|
|
{"bool_data": [False, False, True, True], "str_data": ["a", "b", "c", "a"]}
|
|
)
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"bool_data": [4, 2, False, 2], "str_data": [4, 3, "a", 2]},
|
|
index=["count", "unique", "top", "freq"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_categorical(self):
|
|
df = DataFrame({"value": np.random.default_rng(2).integers(0, 10000, 100)})
|
|
labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)]
|
|
cat_labels = Categorical(labels, labels)
|
|
|
|
df = df.sort_values(by=["value"], ascending=True)
|
|
df["value_group"] = pd.cut(
|
|
df.value, range(0, 10500, 500), right=False, labels=cat_labels
|
|
)
|
|
cat = df
|
|
|
|
# Categoricals should not show up together with numerical columns
|
|
result = cat.describe()
|
|
assert len(result.columns) == 1
|
|
|
|
# In a frame, describe() for the cat should be the same as for string
|
|
# arrays (count, unique, top, freq)
|
|
|
|
cat = Categorical(
|
|
["a", "b", "b", "b"], categories=["a", "b", "c"], ordered=True
|
|
)
|
|
s = Series(cat)
|
|
result = s.describe()
|
|
expected = Series([4, 2, "b", 3], index=["count", "unique", "top", "freq"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
cat = Series(Categorical(["a", "b", "c", "c"]))
|
|
df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]})
|
|
result = df3.describe()
|
|
tm.assert_numpy_array_equal(result["cat"].values, result["s"].values)
|
|
|
|
def test_describe_empty_categorical_column(self):
|
|
# GH#26397
|
|
# Ensure the index of an empty categorical DataFrame column
|
|
# also contains (count, unique, top, freq)
|
|
df = DataFrame({"empty_col": Categorical([])})
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"empty_col": [0, 0, np.nan, np.nan]},
|
|
index=["count", "unique", "top", "freq"],
|
|
dtype="object",
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
# ensure NaN, not None
|
|
assert np.isnan(result.iloc[2, 0])
|
|
assert np.isnan(result.iloc[3, 0])
|
|
|
|
def test_describe_categorical_columns(self):
|
|
# GH#11558
|
|
columns = pd.CategoricalIndex(["int1", "int2", "obj"], ordered=True, name="XXX")
|
|
df = DataFrame(
|
|
{
|
|
"int1": [10, 20, 30, 40, 50],
|
|
"int2": [10, 20, 30, 40, 50],
|
|
"obj": ["A", 0, None, "X", 1],
|
|
},
|
|
columns=columns,
|
|
)
|
|
result = df.describe()
|
|
|
|
exp_columns = pd.CategoricalIndex(
|
|
["int1", "int2"],
|
|
categories=["int1", "int2", "obj"],
|
|
ordered=True,
|
|
name="XXX",
|
|
)
|
|
expected = DataFrame(
|
|
{
|
|
"int1": [5, 30, df.int1.std(), 10, 20, 30, 40, 50],
|
|
"int2": [5, 30, df.int2.std(), 10, 20, 30, 40, 50],
|
|
},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
columns=exp_columns,
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
tm.assert_categorical_equal(result.columns.values, expected.columns.values)
|
|
|
|
def test_describe_datetime_columns(self):
|
|
columns = pd.DatetimeIndex(
|
|
["2011-01-01", "2011-02-01", "2011-03-01"],
|
|
freq="MS",
|
|
tz="US/Eastern",
|
|
name="XXX",
|
|
)
|
|
df = DataFrame(
|
|
{
|
|
0: [10, 20, 30, 40, 50],
|
|
1: [10, 20, 30, 40, 50],
|
|
2: ["A", 0, None, "X", 1],
|
|
}
|
|
)
|
|
df.columns = columns
|
|
result = df.describe()
|
|
|
|
exp_columns = pd.DatetimeIndex(
|
|
["2011-01-01", "2011-02-01"], freq="MS", tz="US/Eastern", name="XXX"
|
|
)
|
|
expected = DataFrame(
|
|
{
|
|
0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50],
|
|
1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50],
|
|
},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
)
|
|
expected.columns = exp_columns
|
|
tm.assert_frame_equal(result, expected)
|
|
assert result.columns.freq == "MS"
|
|
assert result.columns.tz == expected.columns.tz
|
|
|
|
def test_describe_timedelta_values(self):
|
|
# GH#6145
|
|
t1 = pd.timedelta_range("1 days", freq="D", periods=5)
|
|
t2 = pd.timedelta_range("1 hours", freq="h", periods=5)
|
|
df = DataFrame({"t1": t1, "t2": t2})
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"t1": [
|
|
5,
|
|
pd.Timedelta("3 days"),
|
|
df.iloc[:, 0].std(),
|
|
pd.Timedelta("1 days"),
|
|
pd.Timedelta("2 days"),
|
|
pd.Timedelta("3 days"),
|
|
pd.Timedelta("4 days"),
|
|
pd.Timedelta("5 days"),
|
|
],
|
|
"t2": [
|
|
5,
|
|
pd.Timedelta("3 hours"),
|
|
df.iloc[:, 1].std(),
|
|
pd.Timedelta("1 hours"),
|
|
pd.Timedelta("2 hours"),
|
|
pd.Timedelta("3 hours"),
|
|
pd.Timedelta("4 hours"),
|
|
pd.Timedelta("5 hours"),
|
|
],
|
|
},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
)
|
|
|
|
result = df.describe()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
exp_repr = (
|
|
" t1 t2\n"
|
|
"count 5 5\n"
|
|
"mean 3 days 00:00:00 0 days 03:00:00\n"
|
|
"std 1 days 13:56:50.394919273 0 days 01:34:52.099788303\n"
|
|
"min 1 days 00:00:00 0 days 01:00:00\n"
|
|
"25% 2 days 00:00:00 0 days 02:00:00\n"
|
|
"50% 3 days 00:00:00 0 days 03:00:00\n"
|
|
"75% 4 days 00:00:00 0 days 04:00:00\n"
|
|
"max 5 days 00:00:00 0 days 05:00:00"
|
|
)
|
|
assert repr(result) == exp_repr
|
|
|
|
def test_describe_tz_values(self, tz_naive_fixture):
|
|
# GH#21332
|
|
tz = tz_naive_fixture
|
|
s1 = Series(range(5))
|
|
start = Timestamp(2018, 1, 1)
|
|
end = Timestamp(2018, 1, 5)
|
|
s2 = Series(date_range(start, end, tz=tz))
|
|
df = DataFrame({"s1": s1, "s2": s2})
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"s1": [5, 2, 0, 1, 2, 3, 4, 1.581139],
|
|
"s2": [
|
|
5,
|
|
Timestamp(2018, 1, 3).tz_localize(tz),
|
|
start.tz_localize(tz),
|
|
s2[1],
|
|
s2[2],
|
|
s2[3],
|
|
end.tz_localize(tz),
|
|
np.nan,
|
|
],
|
|
},
|
|
index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"],
|
|
)
|
|
result = df.describe(include="all")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_datetime_is_numeric_includes_datetime(self):
|
|
df = DataFrame({"a": date_range("2012", periods=3), "b": [1, 2, 3]})
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{
|
|
"a": [
|
|
3,
|
|
Timestamp("2012-01-02"),
|
|
Timestamp("2012-01-01"),
|
|
Timestamp("2012-01-01T12:00:00"),
|
|
Timestamp("2012-01-02"),
|
|
Timestamp("2012-01-02T12:00:00"),
|
|
Timestamp("2012-01-03"),
|
|
np.nan,
|
|
],
|
|
"b": [3, 2, 1, 1.5, 2, 2.5, 3, 1],
|
|
},
|
|
index=["count", "mean", "min", "25%", "50%", "75%", "max", "std"],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_tz_values2(self):
|
|
tz = "CET"
|
|
s1 = Series(range(5))
|
|
start = Timestamp(2018, 1, 1)
|
|
end = Timestamp(2018, 1, 5)
|
|
s2 = Series(date_range(start, end, tz=tz))
|
|
df = DataFrame({"s1": s1, "s2": s2})
|
|
|
|
s1_ = s1.describe()
|
|
s2_ = s2.describe()
|
|
idx = [
|
|
"count",
|
|
"mean",
|
|
"min",
|
|
"25%",
|
|
"50%",
|
|
"75%",
|
|
"max",
|
|
"std",
|
|
]
|
|
expected = pd.concat([s1_, s2_], axis=1, keys=["s1", "s2"]).reindex(
|
|
idx, copy=False
|
|
)
|
|
|
|
result = df.describe(include="all")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_percentiles_integer_idx(self):
|
|
# GH#26660
|
|
df = DataFrame({"x": [1]})
|
|
pct = np.linspace(0, 1, 10 + 1)
|
|
result = df.describe(percentiles=pct)
|
|
|
|
expected = DataFrame(
|
|
{"x": [1.0, 1.0, np.nan, 1.0, *(1.0 for _ in pct), 1.0]},
|
|
index=[
|
|
"count",
|
|
"mean",
|
|
"std",
|
|
"min",
|
|
"0%",
|
|
"10%",
|
|
"20%",
|
|
"30%",
|
|
"40%",
|
|
"50%",
|
|
"60%",
|
|
"70%",
|
|
"80%",
|
|
"90%",
|
|
"100%",
|
|
"max",
|
|
],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_does_not_raise_error_for_dictlike_elements(self):
|
|
# GH#32409
|
|
df = DataFrame([{"test": {"a": "1"}}, {"test": {"a": "2"}}])
|
|
expected = DataFrame(
|
|
{"test": [2, 2, {"a": "1"}, 1]}, index=["count", "unique", "top", "freq"]
|
|
)
|
|
result = df.describe()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("exclude", ["x", "y", ["x", "y"], ["x", "z"]])
|
|
def test_describe_when_include_all_exclude_not_allowed(self, exclude):
|
|
"""
|
|
When include is 'all', then setting exclude != None is not allowed.
|
|
"""
|
|
df = DataFrame({"x": [1], "y": [2], "z": [3]})
|
|
msg = "exclude must be None when include is 'all'"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.describe(include="all", exclude=exclude)
|
|
|
|
def test_describe_with_duplicate_columns(self):
|
|
df = DataFrame(
|
|
[[1, 1, 1], [2, 2, 2], [3, 3, 3]],
|
|
columns=["bar", "a", "a"],
|
|
dtype="float64",
|
|
)
|
|
result = df.describe()
|
|
ser = df.iloc[:, 0].describe()
|
|
expected = pd.concat([ser, ser, ser], keys=df.columns, axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_ea_with_na(self, any_numeric_ea_dtype):
|
|
# GH#48778
|
|
|
|
df = DataFrame({"a": [1, pd.NA, pd.NA], "b": pd.NA}, dtype=any_numeric_ea_dtype)
|
|
result = df.describe()
|
|
expected = DataFrame(
|
|
{"a": [1.0, 1.0, pd.NA] + [1.0] * 5, "b": [0.0] + [pd.NA] * 7},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
dtype="Float64",
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_describe_exclude_pa_dtype(self):
|
|
# GH#52570
|
|
pa = pytest.importorskip("pyarrow")
|
|
df = DataFrame(
|
|
{
|
|
"a": Series([1, 2, 3], dtype=pd.ArrowDtype(pa.int8())),
|
|
"b": Series([1, 2, 3], dtype=pd.ArrowDtype(pa.int16())),
|
|
"c": Series([1, 2, 3], dtype=pd.ArrowDtype(pa.int32())),
|
|
}
|
|
)
|
|
result = df.describe(
|
|
include=pd.ArrowDtype(pa.int8()), exclude=pd.ArrowDtype(pa.int32())
|
|
)
|
|
expected = DataFrame(
|
|
{"a": [3, 2, 1, 1, 1.5, 2, 2.5, 3]},
|
|
index=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
|
|
dtype=pd.ArrowDtype(pa.float64()),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|