You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
8.6 KiB
304 lines
8.6 KiB
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
|
|
def test_error():
|
|
df = pd.DataFrame(
|
|
{"A": pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd")), "B": 1}
|
|
)
|
|
with pytest.raises(
|
|
ValueError, match="column must be a scalar, tuple, or list thereof"
|
|
):
|
|
df.explode([list("AA")])
|
|
|
|
with pytest.raises(ValueError, match="column must be unique"):
|
|
df.explode(list("AA"))
|
|
|
|
df.columns = list("AA")
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=re.escape("DataFrame columns must be unique. Duplicate columns: ['A']"),
|
|
):
|
|
df.explode("A")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_subset, error_message",
|
|
[
|
|
(
|
|
list("AC"),
|
|
"columns must have matching element counts",
|
|
),
|
|
(
|
|
[],
|
|
"column must be nonempty",
|
|
),
|
|
(
|
|
list("AC"),
|
|
"columns must have matching element counts",
|
|
),
|
|
],
|
|
)
|
|
def test_error_multi_columns(input_subset, error_message):
|
|
# GH 39240
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": [[0, 1, 2], np.nan, [], (3, 4)],
|
|
"B": 1,
|
|
"C": [["a", "b", "c"], "foo", [], ["d", "e", "f"]],
|
|
},
|
|
index=list("abcd"),
|
|
)
|
|
with pytest.raises(ValueError, match=error_message):
|
|
df.explode(input_subset)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"scalar",
|
|
["a", 0, 1.5, pd.Timedelta("1 days"), pd.Timestamp("2019-12-31")],
|
|
)
|
|
def test_basic(scalar):
|
|
df = pd.DataFrame(
|
|
{scalar: pd.Series([[0, 1, 2], np.nan, [], (3, 4)], index=list("abcd")), "B": 1}
|
|
)
|
|
result = df.explode(scalar)
|
|
expected = pd.DataFrame(
|
|
{
|
|
scalar: pd.Series(
|
|
[0, 1, 2, np.nan, np.nan, 3, 4], index=list("aaabcdd"), dtype=object
|
|
),
|
|
"B": 1,
|
|
}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_multi_index_rows():
|
|
df = pd.DataFrame(
|
|
{"A": np.array([[0, 1, 2], np.nan, [], (3, 4)], dtype=object), "B": 1},
|
|
index=pd.MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)]),
|
|
)
|
|
|
|
result = df.explode("A")
|
|
expected = pd.DataFrame(
|
|
{
|
|
"A": pd.Series(
|
|
[0, 1, 2, np.nan, np.nan, 3, 4],
|
|
index=pd.MultiIndex.from_tuples(
|
|
[
|
|
("a", 1),
|
|
("a", 1),
|
|
("a", 1),
|
|
("a", 2),
|
|
("b", 1),
|
|
("b", 2),
|
|
("b", 2),
|
|
]
|
|
),
|
|
dtype=object,
|
|
),
|
|
"B": 1,
|
|
}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_multi_index_columns():
|
|
df = pd.DataFrame(
|
|
{("A", 1): np.array([[0, 1, 2], np.nan, [], (3, 4)], dtype=object), ("A", 2): 1}
|
|
)
|
|
|
|
result = df.explode(("A", 1))
|
|
expected = pd.DataFrame(
|
|
{
|
|
("A", 1): pd.Series(
|
|
[0, 1, 2, np.nan, np.nan, 3, 4],
|
|
index=pd.Index([0, 0, 0, 1, 2, 3, 3]),
|
|
dtype=object,
|
|
),
|
|
("A", 2): 1,
|
|
}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_usecase():
|
|
# explode a single column
|
|
# gh-10511
|
|
df = pd.DataFrame(
|
|
[[11, range(5), 10], [22, range(3), 20]], columns=list("ABC")
|
|
).set_index("C")
|
|
result = df.explode("B")
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
"A": [11, 11, 11, 11, 11, 22, 22, 22],
|
|
"B": np.array([0, 1, 2, 3, 4, 0, 1, 2], dtype=object),
|
|
"C": [10, 10, 10, 10, 10, 20, 20, 20],
|
|
},
|
|
columns=list("ABC"),
|
|
).set_index("C")
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# gh-8517
|
|
df = pd.DataFrame(
|
|
[["2014-01-01", "Alice", "A B"], ["2014-01-02", "Bob", "C D"]],
|
|
columns=["dt", "name", "text"],
|
|
)
|
|
result = df.assign(text=df.text.str.split(" ")).explode("text")
|
|
expected = pd.DataFrame(
|
|
[
|
|
["2014-01-01", "Alice", "A"],
|
|
["2014-01-01", "Alice", "B"],
|
|
["2014-01-02", "Bob", "C"],
|
|
["2014-01-02", "Bob", "D"],
|
|
],
|
|
columns=["dt", "name", "text"],
|
|
index=[0, 0, 1, 1],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_dict, input_index, expected_dict, expected_index",
|
|
[
|
|
(
|
|
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
|
|
[0, 0],
|
|
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
|
|
[0, 0, 0, 0],
|
|
),
|
|
(
|
|
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
|
|
pd.Index([0, 0], name="my_index"),
|
|
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
|
|
pd.Index([0, 0, 0, 0], name="my_index"),
|
|
),
|
|
(
|
|
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
|
|
pd.MultiIndex.from_arrays(
|
|
[[0, 0], [1, 1]], names=["my_first_index", "my_second_index"]
|
|
),
|
|
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
|
|
pd.MultiIndex.from_arrays(
|
|
[[0, 0, 0, 0], [1, 1, 1, 1]],
|
|
names=["my_first_index", "my_second_index"],
|
|
),
|
|
),
|
|
(
|
|
{"col1": [[1, 2], [3, 4]], "col2": ["foo", "bar"]},
|
|
pd.MultiIndex.from_arrays([[0, 0], [1, 1]], names=["my_index", None]),
|
|
{"col1": [1, 2, 3, 4], "col2": ["foo", "foo", "bar", "bar"]},
|
|
pd.MultiIndex.from_arrays(
|
|
[[0, 0, 0, 0], [1, 1, 1, 1]], names=["my_index", None]
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_duplicate_index(input_dict, input_index, expected_dict, expected_index):
|
|
# GH 28005
|
|
df = pd.DataFrame(input_dict, index=input_index, dtype=object)
|
|
result = df.explode("col1")
|
|
expected = pd.DataFrame(expected_dict, index=expected_index, dtype=object)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_ignore_index():
|
|
# GH 34932
|
|
df = pd.DataFrame({"id": range(0, 20, 10), "values": [list("ab"), list("cd")]})
|
|
result = df.explode("values", ignore_index=True)
|
|
expected = pd.DataFrame(
|
|
{"id": [0, 0, 10, 10], "values": list("abcd")}, index=[0, 1, 2, 3]
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_explode_sets():
|
|
# https://github.com/pandas-dev/pandas/issues/35614
|
|
df = pd.DataFrame({"a": [{"x", "y"}], "b": [1]}, index=[1])
|
|
result = df.explode(column="a").sort_values(by="a")
|
|
expected = pd.DataFrame({"a": ["x", "y"], "b": [1, 1]}, index=[1, 1])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_subset, expected_dict, expected_index",
|
|
[
|
|
(
|
|
list("AC"),
|
|
{
|
|
"A": pd.Series(
|
|
[0, 1, 2, np.nan, np.nan, 3, 4, np.nan],
|
|
index=list("aaabcdde"),
|
|
dtype=object,
|
|
),
|
|
"B": 1,
|
|
"C": ["a", "b", "c", "foo", np.nan, "d", "e", np.nan],
|
|
},
|
|
list("aaabcdde"),
|
|
),
|
|
(
|
|
list("A"),
|
|
{
|
|
"A": pd.Series(
|
|
[0, 1, 2, np.nan, np.nan, 3, 4, np.nan],
|
|
index=list("aaabcdde"),
|
|
dtype=object,
|
|
),
|
|
"B": 1,
|
|
"C": [
|
|
["a", "b", "c"],
|
|
["a", "b", "c"],
|
|
["a", "b", "c"],
|
|
"foo",
|
|
[],
|
|
["d", "e"],
|
|
["d", "e"],
|
|
np.nan,
|
|
],
|
|
},
|
|
list("aaabcdde"),
|
|
),
|
|
],
|
|
)
|
|
def test_multi_columns(input_subset, expected_dict, expected_index):
|
|
# GH 39240
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": [[0, 1, 2], np.nan, [], (3, 4), np.nan],
|
|
"B": 1,
|
|
"C": [["a", "b", "c"], "foo", [], ["d", "e"], np.nan],
|
|
},
|
|
index=list("abcde"),
|
|
)
|
|
result = df.explode(input_subset)
|
|
expected = pd.DataFrame(expected_dict, expected_index)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_multi_columns_nan_empty():
|
|
# GH 46084
|
|
df = pd.DataFrame(
|
|
{
|
|
"A": [[0, 1], [5], [], [2, 3]],
|
|
"B": [9, 8, 7, 6],
|
|
"C": [[1, 2], np.nan, [], [3, 4]],
|
|
}
|
|
)
|
|
result = df.explode(["A", "C"])
|
|
expected = pd.DataFrame(
|
|
{
|
|
"A": np.array([0, 1, 5, np.nan, 2, 3], dtype=object),
|
|
"B": [9, 9, 8, 7, 6, 6],
|
|
"C": np.array([1, 2, np.nan, np.nan, 3, 4], dtype=object),
|
|
},
|
|
index=[0, 0, 1, 2, 3, 3],
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|