You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
458 lines
16 KiB
458 lines
16 KiB
from datetime import (
|
|
datetime,
|
|
timedelta,
|
|
)
|
|
import itertools
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.errors import PerformanceWarning
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
Categorical,
|
|
DataFrame,
|
|
Series,
|
|
Timestamp,
|
|
date_range,
|
|
option_context,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.internals.blocks import NumpyBlock
|
|
|
|
# Segregated collection of methods that require the BlockManager internal data
|
|
# structure
|
|
|
|
|
|
# TODO(ArrayManager) check which of those tests need to be rewritten to test the
|
|
# equivalent for ArrayManager
|
|
pytestmark = td.skip_array_manager_invalid_test
|
|
|
|
|
|
class TestDataFrameBlockInternals:
|
|
def test_setitem_invalidates_datetime_index_freq(self):
|
|
# GH#24096 altering a datetime64tz column inplace invalidates the
|
|
# `freq` attribute on the underlying DatetimeIndex
|
|
|
|
dti = date_range("20130101", periods=3, tz="US/Eastern")
|
|
ts = dti[1]
|
|
|
|
df = DataFrame({"B": dti})
|
|
assert df["B"]._values.freq is None
|
|
|
|
df.iloc[1, 0] = pd.NaT
|
|
assert df["B"]._values.freq is None
|
|
|
|
# check that the DatetimeIndex was not altered in place
|
|
assert dti.freq == "D"
|
|
assert dti[1] == ts
|
|
|
|
def test_cast_internals(self, float_frame):
|
|
msg = "Passing a BlockManager to DataFrame"
|
|
with tm.assert_produces_warning(
|
|
DeprecationWarning, match=msg, check_stacklevel=False
|
|
):
|
|
casted = DataFrame(float_frame._mgr, dtype=int)
|
|
expected = DataFrame(float_frame._series, dtype=int)
|
|
tm.assert_frame_equal(casted, expected)
|
|
|
|
with tm.assert_produces_warning(
|
|
DeprecationWarning, match=msg, check_stacklevel=False
|
|
):
|
|
casted = DataFrame(float_frame._mgr, dtype=np.int32)
|
|
expected = DataFrame(float_frame._series, dtype=np.int32)
|
|
tm.assert_frame_equal(casted, expected)
|
|
|
|
def test_consolidate(self, float_frame):
|
|
float_frame["E"] = 7.0
|
|
consolidated = float_frame._consolidate()
|
|
assert len(consolidated._mgr.blocks) == 1
|
|
|
|
# Ensure copy, do I want this?
|
|
recons = consolidated._consolidate()
|
|
assert recons is not consolidated
|
|
tm.assert_frame_equal(recons, consolidated)
|
|
|
|
float_frame["F"] = 8.0
|
|
assert len(float_frame._mgr.blocks) == 3
|
|
|
|
return_value = float_frame._consolidate_inplace()
|
|
assert return_value is None
|
|
assert len(float_frame._mgr.blocks) == 1
|
|
|
|
def test_consolidate_inplace(self, float_frame):
|
|
# triggers in-place consolidation
|
|
for letter in range(ord("A"), ord("Z")):
|
|
float_frame[chr(letter)] = chr(letter)
|
|
|
|
def test_modify_values(self, float_frame, using_copy_on_write):
|
|
if using_copy_on_write:
|
|
with pytest.raises(ValueError, match="read-only"):
|
|
float_frame.values[5] = 5
|
|
assert (float_frame.values[5] != 5).all()
|
|
return
|
|
|
|
float_frame.values[5] = 5
|
|
assert (float_frame.values[5] == 5).all()
|
|
|
|
# unconsolidated
|
|
float_frame["E"] = 7.0
|
|
col = float_frame["E"]
|
|
float_frame.values[6] = 6
|
|
# as of 2.0 .values does not consolidate, so subsequent calls to .values
|
|
# does not share data
|
|
assert not (float_frame.values[6] == 6).all()
|
|
|
|
assert (col == 7).all()
|
|
|
|
def test_boolean_set_uncons(self, float_frame):
|
|
float_frame["E"] = 7.0
|
|
|
|
expected = float_frame.values.copy()
|
|
expected[expected > 1] = 2
|
|
|
|
float_frame[float_frame > 1] = 2
|
|
tm.assert_almost_equal(expected, float_frame.values)
|
|
|
|
def test_constructor_with_convert(self):
|
|
# this is actually mostly a test of lib.maybe_convert_objects
|
|
# #2845
|
|
df = DataFrame({"A": [2**63 - 1]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([2**63 - 1], np.int64), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [2**63]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([2**63], np.uint64), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [datetime(2005, 1, 1), True]})
|
|
result = df["A"]
|
|
expected = Series(
|
|
np.asarray([datetime(2005, 1, 1), True], np.object_), name="A"
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [None, 1]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([np.nan, 1], np.float64), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0, 2]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0, 2], np.float64), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0 + 2.0j, 3]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0 + 2.0j, 3], np.complex128), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0 + 2.0j, 3.0]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0 + 2.0j, 3.0], np.complex128), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0 + 2.0j, True]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0 + 2.0j, True], np.object_), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0, None]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0, np.nan], np.float64), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [1.0 + 2.0j, None]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([1.0 + 2.0j, np.nan], np.complex128), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [2.0, 1, True, None]})
|
|
result = df["A"]
|
|
expected = Series(np.asarray([2.0, 1, True, None], np.object_), name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = DataFrame({"A": [2.0, 1, datetime(2006, 1, 1), None]})
|
|
result = df["A"]
|
|
expected = Series(
|
|
np.asarray([2.0, 1, datetime(2006, 1, 1), None], np.object_), name="A"
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_construction_with_mixed(self, float_string_frame, using_infer_string):
|
|
# test construction edge cases with mixed types
|
|
|
|
# f7u12, this does not work without extensive workaround
|
|
data = [
|
|
[datetime(2001, 1, 5), np.nan, datetime(2001, 1, 2)],
|
|
[datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 1)],
|
|
]
|
|
df = DataFrame(data)
|
|
|
|
# check dtypes
|
|
result = df.dtypes
|
|
expected = Series({"datetime64[us]": 3})
|
|
|
|
# mixed-type frames
|
|
float_string_frame["datetime"] = datetime.now()
|
|
float_string_frame["timedelta"] = timedelta(days=1, seconds=1)
|
|
assert float_string_frame["datetime"].dtype == "M8[us]"
|
|
assert float_string_frame["timedelta"].dtype == "m8[us]"
|
|
result = float_string_frame.dtypes
|
|
expected = Series(
|
|
[np.dtype("float64")] * 4
|
|
+ [
|
|
np.dtype("object") if not using_infer_string else "string",
|
|
np.dtype("datetime64[us]"),
|
|
np.dtype("timedelta64[us]"),
|
|
],
|
|
index=list("ABCD") + ["foo", "datetime", "timedelta"],
|
|
)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_construction_with_conversions(self):
|
|
# convert from a numpy array of non-ns timedelta64; as of 2.0 this does
|
|
# *not* convert
|
|
arr = np.array([1, 2, 3], dtype="timedelta64[s]")
|
|
df = DataFrame(index=range(3))
|
|
df["A"] = arr
|
|
expected = DataFrame(
|
|
{"A": pd.timedelta_range("00:00:01", periods=3, freq="s")}, index=range(3)
|
|
)
|
|
tm.assert_numpy_array_equal(df["A"].to_numpy(), arr)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"dt1": Timestamp("20130101"),
|
|
"dt2": date_range("20130101", periods=3).astype("M8[s]"),
|
|
# 'dt3' : date_range('20130101 00:00:01',periods=3,freq='s'),
|
|
# FIXME: don't leave commented-out
|
|
},
|
|
index=range(3),
|
|
)
|
|
assert expected.dtypes["dt1"] == "M8[s]"
|
|
assert expected.dtypes["dt2"] == "M8[s]"
|
|
|
|
df = DataFrame(index=range(3))
|
|
df["dt1"] = np.datetime64("2013-01-01")
|
|
df["dt2"] = np.array(
|
|
["2013-01-01", "2013-01-02", "2013-01-03"], dtype="datetime64[D]"
|
|
)
|
|
|
|
# df['dt3'] = np.array(['2013-01-01 00:00:01','2013-01-01
|
|
# 00:00:02','2013-01-01 00:00:03'],dtype='datetime64[s]')
|
|
# FIXME: don't leave commented-out
|
|
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
def test_constructor_compound_dtypes(self):
|
|
# GH 5191
|
|
# compound dtypes should raise not-implementederror
|
|
|
|
def f(dtype):
|
|
data = list(itertools.repeat((datetime(2001, 1, 1), "aa", 20), 9))
|
|
return DataFrame(data=data, columns=["A", "B", "C"], dtype=dtype)
|
|
|
|
msg = "compound dtypes are not implemented in the DataFrame constructor"
|
|
with pytest.raises(NotImplementedError, match=msg):
|
|
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
|
|
|
|
# pre-2.0 these used to work (though results may be unexpected)
|
|
with pytest.raises(TypeError, match="argument must be"):
|
|
f("int64")
|
|
with pytest.raises(TypeError, match="argument must be"):
|
|
f("float64")
|
|
|
|
# 10822
|
|
msg = "^Unknown datetime string format, unable to parse: aa, at position 0$"
|
|
with pytest.raises(ValueError, match=msg):
|
|
f("M8[ns]")
|
|
|
|
def test_pickle(self, float_string_frame, timezone_frame):
|
|
empty_frame = DataFrame()
|
|
|
|
unpickled = tm.round_trip_pickle(float_string_frame)
|
|
tm.assert_frame_equal(float_string_frame, unpickled)
|
|
|
|
# buglet
|
|
float_string_frame._mgr.ndim
|
|
|
|
# empty
|
|
unpickled = tm.round_trip_pickle(empty_frame)
|
|
repr(unpickled)
|
|
|
|
# tz frame
|
|
unpickled = tm.round_trip_pickle(timezone_frame)
|
|
tm.assert_frame_equal(timezone_frame, unpickled)
|
|
|
|
def test_consolidate_datetime64(self):
|
|
# numpy vstack bug
|
|
|
|
df = DataFrame(
|
|
{
|
|
"starting": pd.to_datetime(
|
|
[
|
|
"2012-06-21 00:00",
|
|
"2012-06-23 07:00",
|
|
"2012-06-23 16:30",
|
|
"2012-06-25 08:00",
|
|
"2012-06-26 12:00",
|
|
]
|
|
),
|
|
"ending": pd.to_datetime(
|
|
[
|
|
"2012-06-23 07:00",
|
|
"2012-06-23 16:30",
|
|
"2012-06-25 08:00",
|
|
"2012-06-26 12:00",
|
|
"2012-06-27 08:00",
|
|
]
|
|
),
|
|
"measure": [77, 65, 77, 0, 77],
|
|
}
|
|
)
|
|
|
|
ser_starting = df.starting
|
|
ser_starting.index = ser_starting.values
|
|
ser_starting = ser_starting.tz_localize("US/Eastern")
|
|
ser_starting = ser_starting.tz_convert("UTC")
|
|
ser_starting.index.name = "starting"
|
|
|
|
ser_ending = df.ending
|
|
ser_ending.index = ser_ending.values
|
|
ser_ending = ser_ending.tz_localize("US/Eastern")
|
|
ser_ending = ser_ending.tz_convert("UTC")
|
|
ser_ending.index.name = "ending"
|
|
|
|
df.starting = ser_starting.index
|
|
df.ending = ser_ending.index
|
|
|
|
tm.assert_index_equal(pd.DatetimeIndex(df.starting), ser_starting.index)
|
|
tm.assert_index_equal(pd.DatetimeIndex(df.ending), ser_ending.index)
|
|
|
|
def test_is_mixed_type(self, float_frame, float_string_frame):
|
|
assert not float_frame._is_mixed_type
|
|
assert float_string_frame._is_mixed_type
|
|
|
|
def test_stale_cached_series_bug_473(self, using_copy_on_write, warn_copy_on_write):
|
|
# this is chained, but ok
|
|
with option_context("chained_assignment", None):
|
|
Y = DataFrame(
|
|
np.random.default_rng(2).random((4, 4)),
|
|
index=("a", "b", "c", "d"),
|
|
columns=("e", "f", "g", "h"),
|
|
)
|
|
repr(Y)
|
|
Y["e"] = Y["e"].astype("object")
|
|
with tm.raises_chained_assignment_error():
|
|
Y["g"]["c"] = np.nan
|
|
repr(Y)
|
|
Y.sum()
|
|
Y["g"].sum()
|
|
if using_copy_on_write:
|
|
assert not pd.isna(Y["g"]["c"])
|
|
else:
|
|
assert pd.isna(Y["g"]["c"])
|
|
|
|
@pytest.mark.filterwarnings("ignore:Setting a value on a view:FutureWarning")
|
|
def test_strange_column_corruption_issue(self, using_copy_on_write):
|
|
# TODO(wesm): Unclear how exactly this is related to internal matters
|
|
df = DataFrame(index=[0, 1])
|
|
df[0] = np.nan
|
|
wasCol = {}
|
|
|
|
with tm.assert_produces_warning(
|
|
PerformanceWarning, raise_on_extra_warnings=False
|
|
):
|
|
for i, dt in enumerate(df.index):
|
|
for col in range(100, 200):
|
|
if col not in wasCol:
|
|
wasCol[col] = 1
|
|
df[col] = np.nan
|
|
if using_copy_on_write:
|
|
df.loc[dt, col] = i
|
|
else:
|
|
df[col][dt] = i
|
|
|
|
myid = 100
|
|
|
|
first = len(df.loc[pd.isna(df[myid]), [myid]])
|
|
second = len(df.loc[pd.isna(df[myid]), [myid]])
|
|
assert first == second == 0
|
|
|
|
def test_constructor_no_pandas_array(self):
|
|
# Ensure that NumpyExtensionArray isn't allowed inside Series
|
|
# See https://github.com/pandas-dev/pandas/issues/23995 for more.
|
|
arr = Series([1, 2, 3]).array
|
|
result = DataFrame({"A": arr})
|
|
expected = DataFrame({"A": [1, 2, 3]})
|
|
tm.assert_frame_equal(result, expected)
|
|
assert isinstance(result._mgr.blocks[0], NumpyBlock)
|
|
assert result._mgr.blocks[0].is_numeric
|
|
|
|
def test_add_column_with_pandas_array(self):
|
|
# GH 26390
|
|
df = DataFrame({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "d"]})
|
|
df["c"] = pd.arrays.NumpyExtensionArray(np.array([1, 2, None, 3], dtype=object))
|
|
df2 = DataFrame(
|
|
{
|
|
"a": [1, 2, 3, 4],
|
|
"b": ["a", "b", "c", "d"],
|
|
"c": pd.arrays.NumpyExtensionArray(
|
|
np.array([1, 2, None, 3], dtype=object)
|
|
),
|
|
}
|
|
)
|
|
assert type(df["c"]._mgr.blocks[0]) == NumpyBlock
|
|
assert df["c"]._mgr.blocks[0].is_object
|
|
assert type(df2["c"]._mgr.blocks[0]) == NumpyBlock
|
|
assert df2["c"]._mgr.blocks[0].is_object
|
|
tm.assert_frame_equal(df, df2)
|
|
|
|
|
|
def test_update_inplace_sets_valid_block_values(using_copy_on_write):
|
|
# https://github.com/pandas-dev/pandas/issues/33457
|
|
df = DataFrame({"a": Series([1, 2, None], dtype="category")})
|
|
|
|
# inplace update of a single column
|
|
if using_copy_on_write:
|
|
with tm.raises_chained_assignment_error():
|
|
df["a"].fillna(1, inplace=True)
|
|
else:
|
|
with tm.assert_produces_warning(FutureWarning, match="inplace method"):
|
|
df["a"].fillna(1, inplace=True)
|
|
|
|
# check we haven't put a Series into any block.values
|
|
assert isinstance(df._mgr.blocks[0].values, Categorical)
|
|
|
|
if not using_copy_on_write:
|
|
# smoketest for OP bug from GH#35731
|
|
assert df.isnull().sum().sum() == 0
|
|
|
|
|
|
def test_nonconsolidated_item_cache_take():
|
|
# https://github.com/pandas-dev/pandas/issues/35521
|
|
|
|
# create non-consolidated dataframe with object dtype columns
|
|
df = DataFrame()
|
|
df["col1"] = Series(["a"], dtype=object)
|
|
df["col2"] = Series([0], dtype=object)
|
|
|
|
# access column (item cache)
|
|
df["col1"] == "A"
|
|
# take operation
|
|
# (regression was that this consolidated but didn't reset item cache,
|
|
# resulting in an invalid cache and the .at operation not working properly)
|
|
df[df["col2"] == 0]
|
|
|
|
# now setting value should update actual dataframe
|
|
df.at[0, "col1"] = "A"
|
|
|
|
expected = DataFrame({"col1": ["A"], "col2": [0]}, dtype=object)
|
|
tm.assert_frame_equal(df, expected)
|
|
assert df.at[0, "col1"] == "A"
|