You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1426 lines
54 KiB

import operator
import numpy as np
import pytest
from pandas.errors import (
NumExprClobberingError,
UndefinedVariableError,
)
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
date_range,
)
import pandas._testing as tm
from pandas.core.computation.check import NUMEXPR_INSTALLED
@pytest.fixture(params=["python", "pandas"], ids=lambda x: x)
def parser(request):
return request.param
@pytest.fixture(
params=["python", pytest.param("numexpr", marks=td.skip_if_no("numexpr"))],
ids=lambda x: x,
)
def engine(request):
return request.param
def skip_if_no_pandas_parser(parser):
if parser != "pandas":
pytest.skip(f"cannot evaluate with parser={parser}")
class TestCompat:
@pytest.fixture
def df(self):
return DataFrame({"A": [1, 2, 3]})
@pytest.fixture
def expected1(self, df):
return df[df.A > 0]
@pytest.fixture
def expected2(self, df):
return df.A + 1
def test_query_default(self, df, expected1, expected2):
# GH 12749
# this should always work, whether NUMEXPR_INSTALLED or not
result = df.query("A>0")
tm.assert_frame_equal(result, expected1)
result = df.eval("A+1")
tm.assert_series_equal(result, expected2, check_names=False)
def test_query_None(self, df, expected1, expected2):
result = df.query("A>0", engine=None)
tm.assert_frame_equal(result, expected1)
result = df.eval("A+1", engine=None)
tm.assert_series_equal(result, expected2, check_names=False)
def test_query_python(self, df, expected1, expected2):
result = df.query("A>0", engine="python")
tm.assert_frame_equal(result, expected1)
result = df.eval("A+1", engine="python")
tm.assert_series_equal(result, expected2, check_names=False)
def test_query_numexpr(self, df, expected1, expected2):
if NUMEXPR_INSTALLED:
result = df.query("A>0", engine="numexpr")
tm.assert_frame_equal(result, expected1)
result = df.eval("A+1", engine="numexpr")
tm.assert_series_equal(result, expected2, check_names=False)
else:
msg = (
r"'numexpr' is not installed or an unsupported version. "
r"Cannot use engine='numexpr' for query/eval if 'numexpr' is "
r"not installed"
)
with pytest.raises(ImportError, match=msg):
df.query("A>0", engine="numexpr")
with pytest.raises(ImportError, match=msg):
df.eval("A+1", engine="numexpr")
class TestDataFrameEval:
# smaller hits python, larger hits numexpr
@pytest.mark.parametrize("n", [4, 4000])
@pytest.mark.parametrize(
"op_str,op,rop",
[
("+", "__add__", "__radd__"),
("-", "__sub__", "__rsub__"),
("*", "__mul__", "__rmul__"),
("/", "__truediv__", "__rtruediv__"),
],
)
def test_ops(self, op_str, op, rop, n):
# tst ops and reversed ops in evaluation
# GH7198
df = DataFrame(1, index=range(n), columns=list("abcd"))
df.iloc[0] = 2
m = df.mean()
base = DataFrame( # noqa: F841
np.tile(m.values, n).reshape(n, -1), columns=list("abcd")
)
expected = eval(f"base {op_str} df")
# ops as strings
result = eval(f"m {op_str} df")
tm.assert_frame_equal(result, expected)
# these are commutative
if op in ["+", "*"]:
result = getattr(df, op)(m)
tm.assert_frame_equal(result, expected)
# these are not
elif op in ["-", "/"]:
result = getattr(df, rop)(m)
tm.assert_frame_equal(result, expected)
def test_dataframe_sub_numexpr_path(self):
# GH7192: Note we need a large number of rows to ensure this
# goes through the numexpr path
df = DataFrame({"A": np.random.default_rng(2).standard_normal(25000)})
df.iloc[0:5] = np.nan
expected = 1 - np.isnan(df.iloc[0:25])
result = (1 - np.isnan(df)).iloc[0:25]
tm.assert_frame_equal(result, expected)
def test_query_non_str(self):
# GH 11485
df = DataFrame({"A": [1, 2, 3], "B": ["a", "b", "b"]})
msg = "expr must be a string to be evaluated"
with pytest.raises(ValueError, match=msg):
df.query(lambda x: x.B == "b")
with pytest.raises(ValueError, match=msg):
df.query(111)
def test_query_empty_string(self):
# GH 13139
df = DataFrame({"A": [1, 2, 3]})
msg = "expr cannot be an empty string"
with pytest.raises(ValueError, match=msg):
df.query("")
def test_eval_resolvers_as_list(self):
# GH 14095
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 2)), columns=list("ab")
)
dict1 = {"a": 1}
dict2 = {"b": 2}
assert df.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"]
assert pd.eval("a + b", resolvers=[dict1, dict2]) == dict1["a"] + dict2["b"]
def test_eval_resolvers_combined(self):
# GH 34966
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 2)), columns=list("ab")
)
dict1 = {"c": 2}
# Both input and default index/column resolvers should be usable
result = df.eval("a + b * c", resolvers=[dict1])
expected = df["a"] + df["b"] * dict1["c"]
tm.assert_series_equal(result, expected)
def test_eval_object_dtype_binop(self):
# GH#24883
df = DataFrame({"a1": ["Y", "N"]})
res = df.eval("c = ((a1 == 'Y') & True)")
expected = DataFrame({"a1": ["Y", "N"], "c": [True, False]})
tm.assert_frame_equal(res, expected)
class TestDataFrameQueryWithMultiIndex:
def test_query_with_named_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.default_rng(2).choice(["red", "green"], size=10)
b = np.random.default_rng(2).choice(["eggs", "ham"], size=10)
index = MultiIndex.from_arrays([a, b], names=["color", "food"])
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
ind = Series(
df.index.get_level_values("color").values, index=index, name="color"
)
# equality
res1 = df.query('color == "red"', parser=parser, engine=engine)
res2 = df.query('"red" == color', parser=parser, engine=engine)
exp = df[ind == "red"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# inequality
res1 = df.query('color != "red"', parser=parser, engine=engine)
res2 = df.query('"red" != color', parser=parser, engine=engine)
exp = df[ind != "red"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('color == ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] == color', parser=parser, engine=engine)
exp = df[ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('color != ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] != color', parser=parser, engine=engine)
exp = df[~ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["red"] in color', parser=parser, engine=engine)
res2 = df.query('"red" in color', parser=parser, engine=engine)
exp = df[ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('["red"] not in color', parser=parser, engine=engine)
res2 = df.query('"red" not in color', parser=parser, engine=engine)
exp = df[~ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
def test_query_with_unnamed_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.default_rng(2).choice(["red", "green"], size=10)
b = np.random.default_rng(2).choice(["eggs", "ham"], size=10)
index = MultiIndex.from_arrays([a, b])
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
ind = Series(df.index.get_level_values(0).values, index=index)
res1 = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
res2 = df.query('"red" == ilevel_0', parser=parser, engine=engine)
exp = df[ind == "red"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# inequality
res1 = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
res2 = df.query('"red" != ilevel_0', parser=parser, engine=engine)
exp = df[ind != "red"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('ilevel_0 == ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] == ilevel_0', parser=parser, engine=engine)
exp = df[ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('ilevel_0 != ["red"]', parser=parser, engine=engine)
res2 = df.query('["red"] != ilevel_0', parser=parser, engine=engine)
exp = df[~ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["red"] in ilevel_0', parser=parser, engine=engine)
res2 = df.query('"red" in ilevel_0', parser=parser, engine=engine)
exp = df[ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('["red"] not in ilevel_0', parser=parser, engine=engine)
res2 = df.query('"red" not in ilevel_0', parser=parser, engine=engine)
exp = df[~ind.isin(["red"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# ## LEVEL 1
ind = Series(df.index.get_level_values(1).values, index=index)
res1 = df.query('ilevel_1 == "eggs"', parser=parser, engine=engine)
res2 = df.query('"eggs" == ilevel_1', parser=parser, engine=engine)
exp = df[ind == "eggs"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# inequality
res1 = df.query('ilevel_1 != "eggs"', parser=parser, engine=engine)
res2 = df.query('"eggs" != ilevel_1', parser=parser, engine=engine)
exp = df[ind != "eggs"]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# list equality (really just set membership)
res1 = df.query('ilevel_1 == ["eggs"]', parser=parser, engine=engine)
res2 = df.query('["eggs"] == ilevel_1', parser=parser, engine=engine)
exp = df[ind.isin(["eggs"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('ilevel_1 != ["eggs"]', parser=parser, engine=engine)
res2 = df.query('["eggs"] != ilevel_1', parser=parser, engine=engine)
exp = df[~ind.isin(["eggs"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
# in/not in ops
res1 = df.query('["eggs"] in ilevel_1', parser=parser, engine=engine)
res2 = df.query('"eggs" in ilevel_1', parser=parser, engine=engine)
exp = df[ind.isin(["eggs"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
res1 = df.query('["eggs"] not in ilevel_1', parser=parser, engine=engine)
res2 = df.query('"eggs" not in ilevel_1', parser=parser, engine=engine)
exp = df[~ind.isin(["eggs"])]
tm.assert_frame_equal(res1, exp)
tm.assert_frame_equal(res2, exp)
def test_query_with_partially_named_multiindex(self, parser, engine):
skip_if_no_pandas_parser(parser)
a = np.random.default_rng(2).choice(["red", "green"], size=10)
b = np.arange(10)
index = MultiIndex.from_arrays([a, b])
index.names = [None, "rating"]
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)), index=index)
res = df.query("rating == 1", parser=parser, engine=engine)
ind = Series(
df.index.get_level_values("rating").values, index=index, name="rating"
)
exp = df[ind == 1]
tm.assert_frame_equal(res, exp)
res = df.query("rating != 1", parser=parser, engine=engine)
ind = Series(
df.index.get_level_values("rating").values, index=index, name="rating"
)
exp = df[ind != 1]
tm.assert_frame_equal(res, exp)
res = df.query('ilevel_0 == "red"', parser=parser, engine=engine)
ind = Series(df.index.get_level_values(0).values, index=index)
exp = df[ind == "red"]
tm.assert_frame_equal(res, exp)
res = df.query('ilevel_0 != "red"', parser=parser, engine=engine)
ind = Series(df.index.get_level_values(0).values, index=index)
exp = df[ind != "red"]
tm.assert_frame_equal(res, exp)
def test_query_multiindex_get_index_resolvers(self):
df = DataFrame(
np.ones((10, 3)),
index=MultiIndex.from_arrays(
[range(10) for _ in range(2)], names=["spam", "eggs"]
),
)
resolvers = df._get_index_resolvers()
def to_series(mi, level):
level_values = mi.get_level_values(level)
s = level_values.to_series()
s.index = mi
return s
col_series = df.columns.to_series()
expected = {
"index": df.index,
"columns": col_series,
"spam": to_series(df.index, "spam"),
"eggs": to_series(df.index, "eggs"),
"clevel_0": col_series,
}
for k, v in resolvers.items():
if isinstance(v, Index):
assert v.is_(expected[k])
elif isinstance(v, Series):
tm.assert_series_equal(v, expected[k])
else:
raise AssertionError("object must be a Series or Index")
@td.skip_if_no("numexpr")
class TestDataFrameQueryNumExprPandas:
@pytest.fixture
def engine(self):
return "numexpr"
@pytest.fixture
def parser(self):
return "pandas"
def test_date_query_with_attribute_access(self, engine, parser):
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
df["dates1"] = date_range("1/1/2012", periods=5)
df["dates2"] = date_range("1/1/2013", periods=5)
df["dates3"] = date_range("1/1/2014", periods=5)
res = df.query(
"@df.dates1 < 20130101 < @df.dates3", engine=engine, parser=parser
)
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_query_no_attribute_access(self, engine, parser):
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
df["dates1"] = date_range("1/1/2012", periods=5)
df["dates2"] = date_range("1/1/2013", periods=5)
df["dates3"] = date_range("1/1/2014", periods=5)
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_query_with_NaT(self, engine, parser):
n = 10
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates2"] = date_range("1/1/2013", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates3"] = pd.NaT
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query(self, engine, parser):
n = 10
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
res = df.query("index < 20130101 < dates3", engine=engine, parser=parser)
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query_with_NaT(self, engine, parser):
n = 10
# Cast to object to avoid implicit cast when setting entry to pd.NaT below
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3))).astype(
{0: object}
)
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
df.iloc[0, 0] = pd.NaT
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
res = df.query("index < 20130101 < dates3", engine=engine, parser=parser)
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query_with_NaT_duplicates(self, engine, parser):
n = 10
d = {}
d["dates1"] = date_range("1/1/2012", periods=n)
d["dates3"] = date_range("1/1/2014", periods=n)
df = DataFrame(d)
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
res = df.query("dates1 < 20130101 < dates3", engine=engine, parser=parser)
expec = df[(df.index.to_series() < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_query_with_non_date(self, engine, parser):
n = 10
df = DataFrame(
{"dates": date_range("1/1/2012", periods=n), "nondate": np.arange(n)}
)
result = df.query("dates == nondate", parser=parser, engine=engine)
assert len(result) == 0
result = df.query("dates != nondate", parser=parser, engine=engine)
tm.assert_frame_equal(result, df)
msg = r"Invalid comparison between dtype=datetime64\[ns\] and ndarray"
for op in ["<", ">", "<=", ">="]:
with pytest.raises(TypeError, match=msg):
df.query(f"dates {op} nondate", parser=parser, engine=engine)
def test_query_syntax_error(self, engine, parser):
df = DataFrame({"i": range(10), "+": range(3, 13), "r": range(4, 14)})
msg = "invalid syntax"
with pytest.raises(SyntaxError, match=msg):
df.query("i - +", engine=engine, parser=parser)
def test_query_scope(self, engine, parser):
skip_if_no_pandas_parser(parser)
df = DataFrame(
np.random.default_rng(2).standard_normal((20, 2)), columns=list("ab")
)
a, b = 1, 2 # noqa: F841
res = df.query("a > b", engine=engine, parser=parser)
expected = df[df.a > df.b]
tm.assert_frame_equal(res, expected)
res = df.query("@a > b", engine=engine, parser=parser)
expected = df[a > df.b]
tm.assert_frame_equal(res, expected)
# no local variable c
with pytest.raises(
UndefinedVariableError, match="local variable 'c' is not defined"
):
df.query("@a > b > @c", engine=engine, parser=parser)
# no column named 'c'
with pytest.raises(UndefinedVariableError, match="name 'c' is not defined"):
df.query("@a > b > c", engine=engine, parser=parser)
def test_query_doesnt_pickup_local(self, engine, parser):
n = m = 10
df = DataFrame(
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
)
# we don't pick up the local 'sin'
with pytest.raises(UndefinedVariableError, match="name 'sin' is not defined"):
df.query("sin > 5", engine=engine, parser=parser)
def test_query_builtin(self, engine, parser):
n = m = 10
df = DataFrame(
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
)
df.index.name = "sin"
msg = "Variables in expression.+"
with pytest.raises(NumExprClobberingError, match=msg):
df.query("sin > 5", engine=engine, parser=parser)
def test_query(self, engine, parser):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 3)), columns=["a", "b", "c"]
)
tm.assert_frame_equal(
df.query("a < b", engine=engine, parser=parser), df[df.a < df.b]
)
tm.assert_frame_equal(
df.query("a + b > b * c", engine=engine, parser=parser),
df[df.a + df.b > df.b * df.c],
)
def test_query_index_with_name(self, engine, parser):
df = DataFrame(
np.random.default_rng(2).integers(10, size=(10, 3)),
index=Index(range(10), name="blob"),
columns=["a", "b", "c"],
)
res = df.query("(blob < 5) & (a < b)", engine=engine, parser=parser)
expec = df[(df.index < 5) & (df.a < df.b)]
tm.assert_frame_equal(res, expec)
res = df.query("blob < b", engine=engine, parser=parser)
expec = df[df.index < df.b]
tm.assert_frame_equal(res, expec)
def test_query_index_without_name(self, engine, parser):
df = DataFrame(
np.random.default_rng(2).integers(10, size=(10, 3)),
index=range(10),
columns=["a", "b", "c"],
)
# "index" should refer to the index
res = df.query("index < b", engine=engine, parser=parser)
expec = df[df.index < df.b]
tm.assert_frame_equal(res, expec)
# test against a scalar
res = df.query("index < 5", engine=engine, parser=parser)
expec = df[df.index < 5]
tm.assert_frame_equal(res, expec)
def test_nested_scope(self, engine, parser):
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
expected = df[(df > 0) & (df2 > 0)]
result = df.query("(@df > 0) & (@df2 > 0)", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
result = pd.eval("df[df > 0 and df2 > 0]", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
result = pd.eval(
"df[df > 0 and df2 > 0 and df[df > 0] > 0]", engine=engine, parser=parser
)
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
tm.assert_frame_equal(result, expected)
result = pd.eval("df[(df>0) & (df2>0)]", engine=engine, parser=parser)
expected = df.query("(@df>0) & (@df2>0)", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
def test_nested_raises_on_local_self_reference(self, engine, parser):
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
# can't reference ourself b/c we're a local so @ is necessary
with pytest.raises(UndefinedVariableError, match="name 'df' is not defined"):
df.query("df > 0", engine=engine, parser=parser)
def test_local_syntax(self, engine, parser):
skip_if_no_pandas_parser(parser)
df = DataFrame(
np.random.default_rng(2).standard_normal((100, 10)),
columns=list("abcdefghij"),
)
b = 1
expect = df[df.a < b]
result = df.query("a < @b", engine=engine, parser=parser)
tm.assert_frame_equal(result, expect)
expect = df[df.a < df.b]
result = df.query("a < b", engine=engine, parser=parser)
tm.assert_frame_equal(result, expect)
def test_chained_cmp_and_in(self, engine, parser):
skip_if_no_pandas_parser(parser)
cols = list("abc")
df = DataFrame(
np.random.default_rng(2).standard_normal((100, len(cols))), columns=cols
)
res = df.query(
"a < b < c and a not in b not in c", engine=engine, parser=parser
)
ind = (df.a < df.b) & (df.b < df.c) & ~df.b.isin(df.a) & ~df.c.isin(df.b)
expec = df[ind]
tm.assert_frame_equal(res, expec)
def test_local_variable_with_in(self, engine, parser):
skip_if_no_pandas_parser(parser)
a = Series(np.random.default_rng(2).integers(3, size=15), name="a")
b = Series(np.random.default_rng(2).integers(10, size=15), name="b")
df = DataFrame({"a": a, "b": b})
expected = df.loc[(df.b - 1).isin(a)]
result = df.query("b - 1 in a", engine=engine, parser=parser)
tm.assert_frame_equal(expected, result)
b = Series(np.random.default_rng(2).integers(10, size=15), name="b")
expected = df.loc[(b - 1).isin(a)]
result = df.query("@b - 1 in a", engine=engine, parser=parser)
tm.assert_frame_equal(expected, result)
def test_at_inside_string(self, engine, parser):
skip_if_no_pandas_parser(parser)
c = 1 # noqa: F841
df = DataFrame({"a": ["a", "a", "b", "b", "@c", "@c"]})
result = df.query('a == "@c"', engine=engine, parser=parser)
expected = df[df.a == "@c"]
tm.assert_frame_equal(result, expected)
def test_query_undefined_local(self):
engine, parser = self.engine, self.parser
skip_if_no_pandas_parser(parser)
df = DataFrame(np.random.default_rng(2).random((10, 2)), columns=list("ab"))
with pytest.raises(
UndefinedVariableError, match="local variable 'c' is not defined"
):
df.query("a == @c", engine=engine, parser=parser)
def test_index_resolvers_come_after_columns_with_the_same_name(
self, engine, parser
):
n = 1 # noqa: F841
a = np.r_[20:101:20]
df = DataFrame(
{"index": a, "b": np.random.default_rng(2).standard_normal(a.size)}
)
df.index.name = "index"
result = df.query("index > 5", engine=engine, parser=parser)
expected = df[df["index"] > 5]
tm.assert_frame_equal(result, expected)
df = DataFrame(
{"index": a, "b": np.random.default_rng(2).standard_normal(a.size)}
)
result = df.query("ilevel_0 > 5", engine=engine, parser=parser)
expected = df.loc[df.index[df.index > 5]]
tm.assert_frame_equal(result, expected)
df = DataFrame({"a": a, "b": np.random.default_rng(2).standard_normal(a.size)})
df.index.name = "a"
result = df.query("a > 5", engine=engine, parser=parser)
expected = df[df.a > 5]
tm.assert_frame_equal(result, expected)
result = df.query("index > 5", engine=engine, parser=parser)
expected = df.loc[df.index[df.index > 5]]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("op, f", [["==", operator.eq], ["!=", operator.ne]])
def test_inf(self, op, f, engine, parser):
n = 10
df = DataFrame(
{
"a": np.random.default_rng(2).random(n),
"b": np.random.default_rng(2).random(n),
}
)
df.loc[::2, 0] = np.inf
q = f"a {op} inf"
expected = df[f(df.a, np.inf)]
result = df.query(q, engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
def test_check_tz_aware_index_query(self, tz_aware_fixture):
# https://github.com/pandas-dev/pandas/issues/29463
tz = tz_aware_fixture
df_index = date_range(
start="2019-01-01", freq="1d", periods=10, tz=tz, name="time"
)
expected = DataFrame(index=df_index)
df = DataFrame(index=df_index)
result = df.query('"2018-01-03 00:00:00+00" < time')
tm.assert_frame_equal(result, expected)
expected = DataFrame(df_index)
result = df.reset_index().query('"2018-01-03 00:00:00+00" < time')
tm.assert_frame_equal(result, expected)
def test_method_calls_in_query(self, engine, parser):
# https://github.com/pandas-dev/pandas/issues/22435
n = 10
df = DataFrame(
{
"a": 2 * np.random.default_rng(2).random(n),
"b": np.random.default_rng(2).random(n),
}
)
expected = df[df["a"].astype("int") == 0]
result = df.query("a.astype('int') == 0", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
df = DataFrame(
{
"a": np.where(
np.random.default_rng(2).random(n) < 0.5,
np.nan,
np.random.default_rng(2).standard_normal(n),
),
"b": np.random.default_rng(2).standard_normal(n),
}
)
expected = df[df["a"].notnull()]
result = df.query("a.notnull()", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numexpr")
class TestDataFrameQueryNumExprPython(TestDataFrameQueryNumExprPandas):
@pytest.fixture
def engine(self):
return "numexpr"
@pytest.fixture
def parser(self):
return "python"
def test_date_query_no_attribute_access(self, engine, parser):
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
df["dates1"] = date_range("1/1/2012", periods=5)
df["dates2"] = date_range("1/1/2013", periods=5)
df["dates3"] = date_range("1/1/2014", periods=5)
res = df.query(
"(dates1 < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
)
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_query_with_NaT(self, engine, parser):
n = 10
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates2"] = date_range("1/1/2013", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates3"] = pd.NaT
res = df.query(
"(dates1 < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
)
expec = df[(df.dates1 < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query(self, engine, parser):
n = 10
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
res = df.query(
"(index < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
)
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query_with_NaT(self, engine, parser):
n = 10
# Cast to object to avoid implicit cast when setting entry to pd.NaT below
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3))).astype(
{0: object}
)
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
df.iloc[0, 0] = pd.NaT
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
res = df.query(
"(index < 20130101) & (20130101 < dates3)", engine=engine, parser=parser
)
expec = df[(df.index < "20130101") & ("20130101" < df.dates3)]
tm.assert_frame_equal(res, expec)
def test_date_index_query_with_NaT_duplicates(self, engine, parser):
n = 10
df = DataFrame(np.random.default_rng(2).standard_normal((n, 3)))
df["dates1"] = date_range("1/1/2012", periods=n)
df["dates3"] = date_range("1/1/2014", periods=n)
df.loc[np.random.default_rng(2).random(n) > 0.5, "dates1"] = pd.NaT
return_value = df.set_index("dates1", inplace=True, drop=True)
assert return_value is None
msg = r"'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
df.query("index < 20130101 < dates3", engine=engine, parser=parser)
def test_nested_scope(self, engine, parser):
# smoke test
x = 1 # noqa: F841
result = pd.eval("x + 1", engine=engine, parser=parser)
assert result == 2
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
df2 = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
# don't have the pandas parser
msg = r"The '@' prefix is only supported by the pandas parser"
with pytest.raises(SyntaxError, match=msg):
df.query("(@df>0) & (@df2>0)", engine=engine, parser=parser)
with pytest.raises(UndefinedVariableError, match="name 'df' is not defined"):
df.query("(df>0) & (df2>0)", engine=engine, parser=parser)
expected = df[(df > 0) & (df2 > 0)]
result = pd.eval("df[(df > 0) & (df2 > 0)]", engine=engine, parser=parser)
tm.assert_frame_equal(expected, result)
expected = df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]
result = pd.eval(
"df[(df > 0) & (df2 > 0) & (df[df > 0] > 0)]", engine=engine, parser=parser
)
tm.assert_frame_equal(expected, result)
def test_query_numexpr_with_min_and_max_columns(self):
df = DataFrame({"min": [1, 2, 3], "max": [4, 5, 6]})
regex_to_match = (
r"Variables in expression \"\(min\) == \(1\)\" "
r"overlap with builtins: \('min'\)"
)
with pytest.raises(NumExprClobberingError, match=regex_to_match):
df.query("min == 1")
regex_to_match = (
r"Variables in expression \"\(max\) == \(1\)\" "
r"overlap with builtins: \('max'\)"
)
with pytest.raises(NumExprClobberingError, match=regex_to_match):
df.query("max == 1")
class TestDataFrameQueryPythonPandas(TestDataFrameQueryNumExprPandas):
@pytest.fixture
def engine(self):
return "python"
@pytest.fixture
def parser(self):
return "pandas"
def test_query_builtin(self, engine, parser):
n = m = 10
df = DataFrame(
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
)
df.index.name = "sin"
expected = df[df.index > 5]
result = df.query("sin > 5", engine=engine, parser=parser)
tm.assert_frame_equal(expected, result)
class TestDataFrameQueryPythonPython(TestDataFrameQueryNumExprPython):
@pytest.fixture
def engine(self):
return "python"
@pytest.fixture
def parser(self):
return "python"
def test_query_builtin(self, engine, parser):
n = m = 10
df = DataFrame(
np.random.default_rng(2).integers(m, size=(n, 3)), columns=list("abc")
)
df.index.name = "sin"
expected = df[df.index > 5]
result = df.query("sin > 5", engine=engine, parser=parser)
tm.assert_frame_equal(expected, result)
class TestDataFrameQueryStrings:
def test_str_query_method(self, parser, engine):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)), columns=["b"])
df["strings"] = Series(list("aabbccddee"))
expect = df[df.strings == "a"]
if parser != "pandas":
col = "strings"
lst = '"a"'
lhs = [col] * 2 + [lst] * 2
rhs = lhs[::-1]
eq, ne = "==", "!="
ops = 2 * ([eq] + [ne])
msg = r"'(Not)?In' nodes are not implemented"
for lhs, op, rhs in zip(lhs, ops, rhs):
ex = f"{lhs} {op} {rhs}"
with pytest.raises(NotImplementedError, match=msg):
df.query(
ex,
engine=engine,
parser=parser,
local_dict={"strings": df.strings},
)
else:
res = df.query('"a" == strings', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
res = df.query('strings == "a"', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
tm.assert_frame_equal(res, df[df.strings.isin(["a"])])
expect = df[df.strings != "a"]
res = df.query('strings != "a"', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
res = df.query('"a" != strings', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
tm.assert_frame_equal(res, df[~df.strings.isin(["a"])])
def test_str_list_query_method(self, parser, engine):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)), columns=["b"])
df["strings"] = Series(list("aabbccddee"))
expect = df[df.strings.isin(["a", "b"])]
if parser != "pandas":
col = "strings"
lst = '["a", "b"]'
lhs = [col] * 2 + [lst] * 2
rhs = lhs[::-1]
eq, ne = "==", "!="
ops = 2 * ([eq] + [ne])
msg = r"'(Not)?In' nodes are not implemented"
for lhs, op, rhs in zip(lhs, ops, rhs):
ex = f"{lhs} {op} {rhs}"
with pytest.raises(NotImplementedError, match=msg):
df.query(ex, engine=engine, parser=parser)
else:
res = df.query('strings == ["a", "b"]', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
res = df.query('["a", "b"] == strings', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
expect = df[~df.strings.isin(["a", "b"])]
res = df.query('strings != ["a", "b"]', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
res = df.query('["a", "b"] != strings', engine=engine, parser=parser)
tm.assert_frame_equal(res, expect)
def test_query_with_string_columns(self, parser, engine):
df = DataFrame(
{
"a": list("aaaabbbbcccc"),
"b": list("aabbccddeeff"),
"c": np.random.default_rng(2).integers(5, size=12),
"d": np.random.default_rng(2).integers(9, size=12),
}
)
if parser == "pandas":
res = df.query("a in b", parser=parser, engine=engine)
expec = df[df.a.isin(df.b)]
tm.assert_frame_equal(res, expec)
res = df.query("a in b and c < d", parser=parser, engine=engine)
expec = df[df.a.isin(df.b) & (df.c < df.d)]
tm.assert_frame_equal(res, expec)
else:
msg = r"'(Not)?In' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
df.query("a in b", parser=parser, engine=engine)
msg = r"'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
df.query("a in b and c < d", parser=parser, engine=engine)
def test_object_array_eq_ne(self, parser, engine, using_infer_string):
df = DataFrame(
{
"a": list("aaaabbbbcccc"),
"b": list("aabbccddeeff"),
"c": np.random.default_rng(2).integers(5, size=12),
"d": np.random.default_rng(2).integers(9, size=12),
}
)
warning = RuntimeWarning if using_infer_string and engine == "numexpr" else None
with tm.assert_produces_warning(warning):
res = df.query("a == b", parser=parser, engine=engine)
exp = df[df.a == df.b]
tm.assert_frame_equal(res, exp)
with tm.assert_produces_warning(warning):
res = df.query("a != b", parser=parser, engine=engine)
exp = df[df.a != df.b]
tm.assert_frame_equal(res, exp)
def test_query_with_nested_strings(self, parser, engine):
skip_if_no_pandas_parser(parser)
events = [
f"page {n} {act}" for n in range(1, 4) for act in ["load", "exit"]
] * 2
stamps1 = date_range("2014-01-01 0:00:01", freq="30s", periods=6)
stamps2 = date_range("2014-02-01 1:00:01", freq="30s", periods=6)
df = DataFrame(
{
"id": np.arange(1, 7).repeat(2),
"event": events,
"timestamp": stamps1.append(stamps2),
}
)
expected = df[df.event == '"page 1 load"']
res = df.query("""'"page 1 load"' in event""", parser=parser, engine=engine)
tm.assert_frame_equal(expected, res)
def test_query_with_nested_special_character(self, parser, engine):
skip_if_no_pandas_parser(parser)
df = DataFrame({"a": ["a", "b", "test & test"], "b": [1, 2, 3]})
res = df.query('a == "test & test"', parser=parser, engine=engine)
expec = df[df.a == "test & test"]
tm.assert_frame_equal(res, expec)
@pytest.mark.parametrize(
"op, func",
[
["<", operator.lt],
[">", operator.gt],
["<=", operator.le],
[">=", operator.ge],
],
)
def test_query_lex_compare_strings(
self, parser, engine, op, func, using_infer_string
):
a = Series(np.random.default_rng(2).choice(list("abcde"), 20))
b = Series(np.arange(a.size))
df = DataFrame({"X": a, "Y": b})
warning = RuntimeWarning if using_infer_string and engine == "numexpr" else None
with tm.assert_produces_warning(warning):
res = df.query(f'X {op} "d"', engine=engine, parser=parser)
expected = df[func(df.X, "d")]
tm.assert_frame_equal(res, expected)
def test_query_single_element_booleans(self, parser, engine):
columns = "bid", "bidsize", "ask", "asksize"
data = np.random.default_rng(2).integers(2, size=(1, len(columns))).astype(bool)
df = DataFrame(data, columns=columns)
res = df.query("bid & ask", engine=engine, parser=parser)
expected = df[df.bid & df.ask]
tm.assert_frame_equal(res, expected)
def test_query_string_scalar_variable(self, parser, engine):
skip_if_no_pandas_parser(parser)
df = DataFrame(
{
"Symbol": ["BUD US", "BUD US", "IBM US", "IBM US"],
"Price": [109.70, 109.72, 183.30, 183.35],
}
)
e = df[df.Symbol == "BUD US"]
symb = "BUD US" # noqa: F841
r = df.query("Symbol == @symb", parser=parser, engine=engine)
tm.assert_frame_equal(e, r)
@pytest.mark.parametrize(
"in_list",
[
[None, "asdf", "ghjk"],
["asdf", None, "ghjk"],
["asdf", "ghjk", None],
[None, None, "asdf"],
["asdf", None, None],
[None, None, None],
],
)
def test_query_string_null_elements(self, in_list):
# GITHUB ISSUE #31516
parser = "pandas"
engine = "python"
expected = {i: value for i, value in enumerate(in_list) if value == "asdf"}
df_expected = DataFrame({"a": expected}, dtype="string")
df_expected.index = df_expected.index.astype("int64")
df = DataFrame({"a": in_list}, dtype="string")
res1 = df.query("a == 'asdf'", parser=parser, engine=engine)
res2 = df[df["a"] == "asdf"]
res3 = df.query("a <= 'asdf'", parser=parser, engine=engine)
tm.assert_frame_equal(res1, df_expected)
tm.assert_frame_equal(res1, res2)
tm.assert_frame_equal(res1, res3)
tm.assert_frame_equal(res2, res3)
class TestDataFrameEvalWithFrame:
@pytest.fixture
def frame(self):
return DataFrame(
np.random.default_rng(2).standard_normal((10, 3)), columns=list("abc")
)
def test_simple_expr(self, frame, parser, engine):
res = frame.eval("a + b", engine=engine, parser=parser)
expect = frame.a + frame.b
tm.assert_series_equal(res, expect)
def test_bool_arith_expr(self, frame, parser, engine):
res = frame.eval("a[a < 1] + b", engine=engine, parser=parser)
expect = frame.a[frame.a < 1] + frame.b
tm.assert_series_equal(res, expect)
@pytest.mark.parametrize("op", ["+", "-", "*", "/"])
def test_invalid_type_for_operator_raises(self, parser, engine, op):
df = DataFrame({"a": [1, 2], "b": ["c", "d"]})
msg = r"unsupported operand type\(s\) for .+: '.+' and '.+'|Cannot"
with pytest.raises(TypeError, match=msg):
df.eval(f"a {op} b", engine=engine, parser=parser)
class TestDataFrameQueryBacktickQuoting:
@pytest.fixture
def df(self):
"""
Yields a dataframe with strings that may or may not need escaping
by backticks. The last two columns cannot be escaped by backticks
and should raise a ValueError.
"""
yield DataFrame(
{
"A": [1, 2, 3],
"B B": [3, 2, 1],
"C C": [4, 5, 6],
"C C": [7, 4, 3],
"C_C": [8, 9, 10],
"D_D D": [11, 1, 101],
"E.E": [6, 3, 5],
"F-F": [8, 1, 10],
"1e1": [2, 4, 8],
"def": [10, 11, 2],
"A (x)": [4, 1, 3],
"B(x)": [1, 1, 5],
"B (x)": [2, 7, 4],
" &^ :!€$?(} > <++*'' ": [2, 5, 6],
"": [10, 11, 1],
" A": [4, 7, 9],
" ": [1, 2, 1],
"it's": [6, 3, 1],
"that's": [9, 1, 8],
"": [8, 7, 6],
"foo#bar": [2, 4, 5],
1: [5, 7, 9],
}
)
def test_single_backtick_variable_query(self, df):
res = df.query("1 < `B B`")
expect = df[1 < df["B B"]]
tm.assert_frame_equal(res, expect)
def test_two_backtick_variables_query(self, df):
res = df.query("1 < `B B` and 4 < `C C`")
expect = df[(1 < df["B B"]) & (4 < df["C C"])]
tm.assert_frame_equal(res, expect)
def test_single_backtick_variable_expr(self, df):
res = df.eval("A + `B B`")
expect = df["A"] + df["B B"]
tm.assert_series_equal(res, expect)
def test_two_backtick_variables_expr(self, df):
res = df.eval("`B B` + `C C`")
expect = df["B B"] + df["C C"]
tm.assert_series_equal(res, expect)
def test_already_underscore_variable(self, df):
res = df.eval("`C_C` + A")
expect = df["C_C"] + df["A"]
tm.assert_series_equal(res, expect)
def test_same_name_but_underscores(self, df):
res = df.eval("C_C + `C C`")
expect = df["C_C"] + df["C C"]
tm.assert_series_equal(res, expect)
def test_mixed_underscores_and_spaces(self, df):
res = df.eval("A + `D_D D`")
expect = df["A"] + df["D_D D"]
tm.assert_series_equal(res, expect)
def test_backtick_quote_name_with_no_spaces(self, df):
res = df.eval("A + `C_C`")
expect = df["A"] + df["C_C"]
tm.assert_series_equal(res, expect)
def test_special_characters(self, df):
res = df.eval("`E.E` + `F-F` - A")
expect = df["E.E"] + df["F-F"] - df["A"]
tm.assert_series_equal(res, expect)
def test_start_with_digit(self, df):
res = df.eval("A + `1e1`")
expect = df["A"] + df["1e1"]
tm.assert_series_equal(res, expect)
def test_keyword(self, df):
res = df.eval("A + `def`")
expect = df["A"] + df["def"]
tm.assert_series_equal(res, expect)
def test_unneeded_quoting(self, df):
res = df.query("`A` > 2")
expect = df[df["A"] > 2]
tm.assert_frame_equal(res, expect)
def test_parenthesis(self, df):
res = df.query("`A (x)` > 2")
expect = df[df["A (x)"] > 2]
tm.assert_frame_equal(res, expect)
def test_empty_string(self, df):
res = df.query("`` > 5")
expect = df[df[""] > 5]
tm.assert_frame_equal(res, expect)
def test_multiple_spaces(self, df):
res = df.query("`C C` > 5")
expect = df[df["C C"] > 5]
tm.assert_frame_equal(res, expect)
def test_start_with_spaces(self, df):
res = df.eval("` A` + ` `")
expect = df[" A"] + df[" "]
tm.assert_series_equal(res, expect)
def test_lots_of_operators_string(self, df):
res = df.query("` &^ :!€$?(} > <++*'' ` > 4")
expect = df[df[" &^ :!€$?(} > <++*'' "] > 4]
tm.assert_frame_equal(res, expect)
def test_missing_attribute(self, df):
message = "module 'pandas' has no attribute 'thing'"
with pytest.raises(AttributeError, match=message):
df.eval("@pd.thing")
def test_failing_quote(self, df):
msg = r"(Could not convert ).*( to a valid Python identifier.)"
with pytest.raises(SyntaxError, match=msg):
df.query("`it's` > `that's`")
def test_failing_character_outside_range(self, df):
msg = r"(Could not convert ).*( to a valid Python identifier.)"
with pytest.raises(SyntaxError, match=msg):
df.query("`☺` > 4")
def test_failing_hashtag(self, df):
msg = "Failed to parse backticks"
with pytest.raises(SyntaxError, match=msg):
df.query("`foo#bar` > 4")
def test_call_non_named_expression(self, df):
"""
Only attributes and variables ('named functions') can be called.
.__call__() is not an allowed attribute because that would allow
calling anything.
https://github.com/pandas-dev/pandas/pull/32460
"""
def func(*_):
return 1
funcs = [func] # noqa: F841
df.eval("@func()")
with pytest.raises(TypeError, match="Only named functions are supported"):
df.eval("@funcs[0]()")
with pytest.raises(TypeError, match="Only named functions are supported"):
df.eval("@funcs[0].__call__()")
def test_ea_dtypes(self, any_numeric_ea_and_arrow_dtype):
# GH#29618
df = DataFrame(
[[1, 2], [3, 4]], columns=["a", "b"], dtype=any_numeric_ea_and_arrow_dtype
)
warning = RuntimeWarning if NUMEXPR_INSTALLED else None
with tm.assert_produces_warning(warning):
result = df.eval("c = b - a")
expected = DataFrame(
[[1, 2, 1], [3, 4, 1]],
columns=["a", "b", "c"],
dtype=any_numeric_ea_and_arrow_dtype,
)
tm.assert_frame_equal(result, expected)
def test_ea_dtypes_and_scalar(self):
# GH#29618
df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"], dtype="Float64")
warning = RuntimeWarning if NUMEXPR_INSTALLED else None
with tm.assert_produces_warning(warning):
result = df.eval("c = b - 1")
expected = DataFrame(
[[1, 2, 1], [3, 4, 3]], columns=["a", "b", "c"], dtype="Float64"
)
tm.assert_frame_equal(result, expected)
def test_ea_dtypes_and_scalar_operation(self, any_numeric_ea_and_arrow_dtype):
# GH#29618
df = DataFrame(
[[1, 2], [3, 4]], columns=["a", "b"], dtype=any_numeric_ea_and_arrow_dtype
)
result = df.eval("c = 2 - 1")
expected = DataFrame(
{
"a": Series([1, 3], dtype=any_numeric_ea_and_arrow_dtype),
"b": Series([2, 4], dtype=any_numeric_ea_and_arrow_dtype),
"c": Series([1, 1], dtype=result["c"].dtype),
}
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", ["int64", "Int64", "int64[pyarrow]"])
def test_query_ea_dtypes(self, dtype):
if dtype == "int64[pyarrow]":
pytest.importorskip("pyarrow")
# GH#50261
df = DataFrame({"a": Series([1, 2], dtype=dtype)})
ref = {2} # noqa: F841
warning = RuntimeWarning if dtype == "Int64" and NUMEXPR_INSTALLED else None
with tm.assert_produces_warning(warning):
result = df.query("a in @ref")
expected = DataFrame({"a": Series([2], dtype=dtype, index=[1])})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("engine", ["python", "numexpr"])
@pytest.mark.parametrize("dtype", ["int64", "Int64", "int64[pyarrow]"])
def test_query_ea_equality_comparison(self, dtype, engine):
# GH#50261
warning = RuntimeWarning if engine == "numexpr" else None
if engine == "numexpr" and not NUMEXPR_INSTALLED:
pytest.skip("numexpr not installed")
if dtype == "int64[pyarrow]":
pytest.importorskip("pyarrow")
df = DataFrame(
{"A": Series([1, 1, 2], dtype="Int64"), "B": Series([1, 2, 2], dtype=dtype)}
)
with tm.assert_produces_warning(warning):
result = df.query("A == B", engine=engine)
expected = DataFrame(
{
"A": Series([1, 2], dtype="Int64", index=[0, 2]),
"B": Series([1, 2], dtype=dtype, index=[0, 2]),
}
)
tm.assert_frame_equal(result, expected)
def test_all_nat_in_object(self):
# GH#57068
now = pd.Timestamp.now("UTC") # noqa: F841
df = DataFrame({"a": pd.to_datetime([None, None], utc=True)}, dtype=object)
result = df.query("a > @now")
expected = DataFrame({"a": []}, dtype=object)
tm.assert_frame_equal(result, expected)