You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

522 lines
16 KiB

from datetime import (
datetime,
timedelta,
)
from io import StringIO
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
from pandas import (
NA,
Categorical,
CategoricalIndex,
DataFrame,
IntervalIndex,
MultiIndex,
NaT,
PeriodIndex,
Series,
Timestamp,
date_range,
option_context,
period_range,
)
import pandas._testing as tm
class TestDataFrameRepr:
def test_repr_should_return_str(self):
# https://docs.python.org/3/reference/datamodel.html#object.__repr__
# "...The return value must be a string object."
# (str on py2.x, str (unicode) on py3)
data = [8, 5, 3, 5]
index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"]
cols = ["\u03c8"]
df = DataFrame(data, columns=cols, index=index1)
assert type(df.__repr__()) is str # noqa: E721
ser = df[cols[0]]
assert type(ser.__repr__()) is str # noqa: E721
def test_repr_bytes_61_lines(self):
# GH#12857
lets = list("ACDEFGHIJKLMNOP")
words = np.random.default_rng(2).choice(lets, (1000, 50))
df = DataFrame(words).astype("U1")
assert (df.dtypes == object).all()
# smoke tests; at one point this raised with 61 but not 60
repr(df)
repr(df.iloc[:60, :])
repr(df.iloc[:61, :])
def test_repr_unicode_level_names(self, frame_or_series):
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])
obj = DataFrame(np.random.default_rng(2).standard_normal((2, 4)), index=index)
obj = tm.get_obj(obj, frame_or_series)
repr(obj)
def test_assign_index_sequences(self):
# GH#2200
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
["a", "b"]
)
index = list(df.index)
index[0] = ("faz", "boo")
df.index = index
repr(df)
# this travels an improper code path
index[0] = ["faz", "boo"]
df.index = index
repr(df)
def test_repr_with_mi_nat(self):
df = DataFrame({"X": [1, 2]}, index=[[NaT, Timestamp("20130101")], ["a", "b"]])
result = repr(df)
expected = " X\nNaT a 1\n2013-01-01 b 2"
assert result == expected
def test_repr_with_different_nulls(self):
# GH45263
df = DataFrame([1, 2, 3, 4], [True, None, np.nan, NaT])
result = repr(df)
expected = """ 0
True 1
None 2
NaN 3
NaT 4"""
assert result == expected
def test_repr_with_different_nulls_cols(self):
# GH45263
d = {np.nan: [1, 2], None: [3, 4], NaT: [6, 7], True: [8, 9]}
df = DataFrame(data=d)
result = repr(df)
expected = """ NaN None NaT True
0 1 3 6 8
1 2 4 7 9"""
assert result == expected
def test_multiindex_na_repr(self):
# only an issue with long columns
df3 = DataFrame(
{
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
"B" * 30: {("A", "A0006000", "nuit"): np.nan},
"C" * 30: {("A", "A0006000", "nuit"): np.nan},
"D" * 30: {("A", "A0006000", "nuit"): np.nan},
"E" * 30: {("A", "A0006000", "nuit"): "A"},
"F" * 30: {("A", "A0006000", "nuit"): np.nan},
}
)
idf = df3.set_index(["A" * 30, "C" * 30])
repr(idf)
def test_repr_name_coincide(self):
index = MultiIndex.from_tuples(
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
)
df = DataFrame({"value": [0, 1]}, index=index)
lines = repr(df).split("\n")
assert lines[2].startswith("a 0 foo")
def test_repr_to_string(
self,
multiindex_year_month_day_dataframe_random_data,
multiindex_dataframe_random_data,
):
ymd = multiindex_year_month_day_dataframe_random_data
frame = multiindex_dataframe_random_data
repr(frame)
repr(ymd)
repr(frame.T)
repr(ymd.T)
buf = StringIO()
frame.to_string(buf=buf)
ymd.to_string(buf=buf)
frame.T.to_string(buf=buf)
ymd.T.to_string(buf=buf)
def test_repr_empty(self):
# empty
repr(DataFrame())
# empty with index
frame = DataFrame(index=np.arange(1000))
repr(frame)
def test_repr_mixed(self, float_string_frame):
# mixed
repr(float_string_frame)
@pytest.mark.slow
def test_repr_mixed_big(self):
# big mixed
biggie = DataFrame(
{
"A": np.random.default_rng(2).standard_normal(200),
"B": [str(i) for i in range(200)],
},
index=range(200),
)
biggie.loc[:20, "A"] = np.nan
biggie.loc[:20, "B"] = np.nan
repr(biggie)
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="/r in")
def test_repr(self):
# columns but no index
no_index = DataFrame(columns=[0, 1, 3])
repr(no_index)
df = DataFrame(["a\n\r\tb"], columns=["a\n\r\td"], index=["a\n\r\tf"])
assert "\t" not in repr(df)
assert "\r" not in repr(df)
assert "a\n" not in repr(df)
def test_repr_dimensions(self):
df = DataFrame([[1, 2], [3, 4]])
with option_context("display.show_dimensions", True):
assert "2 rows x 2 columns" in repr(df)
with option_context("display.show_dimensions", False):
assert "2 rows x 2 columns" not in repr(df)
with option_context("display.show_dimensions", "truncate"):
assert "2 rows x 2 columns" not in repr(df)
@pytest.mark.slow
def test_repr_big(self):
# big one
biggie = DataFrame(np.zeros((200, 4)), columns=range(4), index=range(200))
repr(biggie)
def test_repr_unsortable(self):
# columns are not sortable
unsortable = DataFrame(
{
"foo": [1] * 50,
datetime.today(): [1] * 50,
"bar": ["bar"] * 50,
datetime.today() + timedelta(1): ["bar"] * 50,
},
index=np.arange(50),
)
repr(unsortable)
def test_repr_float_frame_options(self, float_frame):
repr(float_frame)
with option_context("display.precision", 3):
repr(float_frame)
with option_context("display.max_rows", 10, "display.max_columns", 2):
repr(float_frame)
with option_context("display.max_rows", 1000, "display.max_columns", 1000):
repr(float_frame)
def test_repr_unicode(self):
uval = "\u03c3\u03c3\u03c3\u03c3"
df = DataFrame({"A": [uval, uval]})
result = repr(df)
ex_top = " A"
assert result.split("\n")[0].rstrip() == ex_top
df = DataFrame({"A": [uval, uval]})
result = repr(df)
assert result.split("\n")[0].rstrip() == ex_top
def test_unicode_string_with_unicode(self):
df = DataFrame({"A": ["\u05d0"]})
str(df)
def test_repr_unicode_columns(self):
df = DataFrame({"\u05d0": [1, 2, 3], "\u05d1": [4, 5, 6], "c": [7, 8, 9]})
repr(df.columns) # should not raise UnicodeDecodeError
def test_str_to_bytes_raises(self):
# GH 26447
df = DataFrame({"A": ["abc"]})
msg = "^'str' object cannot be interpreted as an integer$"
with pytest.raises(TypeError, match=msg):
bytes(df)
def test_very_wide_repr(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 20)),
columns=np.array(["a" * 10] * 20, dtype=object),
)
repr(df)
def test_repr_column_name_unicode_truncation_bug(self):
# #1906
df = DataFrame(
{
"Id": [7117434],
"StringCol": (
"Is it possible to modify drop plot code"
"so that the output graph is displayed "
"in iphone simulator, Is it possible to "
"modify drop plot code so that the "
"output graph is \xe2\x80\xa8displayed "
"in iphone simulator.Now we are adding "
"the CSV file externally. I want to Call "
"the File through the code.."
),
}
)
with option_context("display.max_columns", 20):
assert "StringCol" in repr(df)
def test_latex_repr(self):
pytest.importorskip("jinja2")
expected = r"""\begin{tabular}{llll}
\toprule
& 0 & 1 & 2 \\
\midrule
0 & $\alpha$ & b & c \\
1 & 1 & 2 & 3 \\
\bottomrule
\end{tabular}
"""
with option_context(
"styler.format.escape", None, "styler.render.repr", "latex"
):
df = DataFrame([[r"$\alpha$", "b", "c"], [1, 2, 3]])
result = df._repr_latex_()
assert result == expected
# GH 12182
assert df._repr_latex_() is None
def test_repr_with_datetimeindex(self):
df = DataFrame({"A": [1, 2, 3]}, index=date_range("2000", periods=3))
result = repr(df)
expected = " A\n2000-01-01 1\n2000-01-02 2\n2000-01-03 3"
assert result == expected
def test_repr_with_intervalindex(self):
# https://github.com/pandas-dev/pandas/pull/24134/files
df = DataFrame(
{"A": [1, 2, 3, 4]}, index=IntervalIndex.from_breaks([0, 1, 2, 3, 4])
)
result = repr(df)
expected = " A\n(0, 1] 1\n(1, 2] 2\n(2, 3] 3\n(3, 4] 4"
assert result == expected
def test_repr_with_categorical_index(self):
df = DataFrame({"A": [1, 2, 3]}, index=CategoricalIndex(["a", "b", "c"]))
result = repr(df)
expected = " A\na 1\nb 2\nc 3"
assert result == expected
def test_repr_categorical_dates_periods(self):
# normal DataFrame
dt = date_range("2011-01-01 09:00", freq="h", periods=5, tz="US/Eastern")
p = period_range("2011-01", freq="M", periods=5)
df = DataFrame({"dt": dt, "p": p})
exp = """ dt p
0 2011-01-01 09:00:00-05:00 2011-01
1 2011-01-01 10:00:00-05:00 2011-02
2 2011-01-01 11:00:00-05:00 2011-03
3 2011-01-01 12:00:00-05:00 2011-04
4 2011-01-01 13:00:00-05:00 2011-05"""
assert repr(df) == exp
df2 = DataFrame({"dt": Categorical(dt), "p": Categorical(p)})
assert repr(df2) == exp
@pytest.mark.parametrize("arg", [np.datetime64, np.timedelta64])
@pytest.mark.parametrize(
"box, expected",
[[Series, "0 NaT\ndtype: object"], [DataFrame, " 0\n0 NaT"]],
)
def test_repr_np_nat_with_object(self, arg, box, expected):
# GH 25445
result = repr(box([arg("NaT")], dtype=object))
assert result == expected
def test_frame_datetime64_pre1900_repr(self):
df = DataFrame({"year": date_range("1/1/1700", periods=50, freq="YE-DEC")})
# it works!
repr(df)
def test_frame_to_string_with_periodindex(self):
index = PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
frame = DataFrame(np.random.default_rng(2).standard_normal((3, 4)), index=index)
# it works!
frame.to_string()
def test_to_string_ea_na_in_multiindex(self):
# GH#47986
df = DataFrame(
{"a": [1, 2]},
index=MultiIndex.from_arrays([Series([NA, 1], dtype="Int64")]),
)
result = df.to_string()
expected = """ a
<NA> 1
1 2"""
assert result == expected
def test_datetime64tz_slice_non_truncate(self):
# GH 30263
df = DataFrame({"x": date_range("2019", periods=10, tz="UTC")})
expected = repr(df)
df = df.iloc[:, :5]
result = repr(df)
assert result == expected
def test_to_records_no_typeerror_in_repr(self):
# GH 48526
df = DataFrame([["a", "b"], ["c", "d"], ["e", "f"]], columns=["left", "right"])
df["record"] = df[["left", "right"]].to_records()
expected = """ left right record
0 a b [0, a, b]
1 c d [1, c, d]
2 e f [2, e, f]"""
result = repr(df)
assert result == expected
def test_to_records_with_na_record_value(self):
# GH 48526
df = DataFrame(
[["a", np.nan], ["c", "d"], ["e", "f"]], columns=["left", "right"]
)
df["record"] = df[["left", "right"]].to_records()
expected = """ left right record
0 a NaN [0, a, nan]
1 c d [1, c, d]
2 e f [2, e, f]"""
result = repr(df)
assert result == expected
def test_to_records_with_na_record(self):
# GH 48526
df = DataFrame(
[["a", "b"], [np.nan, np.nan], ["e", "f"]], columns=[np.nan, "right"]
)
df["record"] = df[[np.nan, "right"]].to_records()
expected = """ NaN right record
0 a b [0, a, b]
1 NaN NaN [1, nan, nan]
2 e f [2, e, f]"""
result = repr(df)
assert result == expected
def test_to_records_with_inf_as_na_record(self):
# GH 48526
expected = """ NaN inf record
0 inf b [0, inf, b]
1 NaN NaN [1, nan, nan]
2 e f [2, e, f]"""
msg = "use_inf_as_na option is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
with option_context("use_inf_as_na", True):
df = DataFrame(
[[np.inf, "b"], [np.nan, np.nan], ["e", "f"]],
columns=[np.nan, np.inf],
)
df["record"] = df[[np.nan, np.inf]].to_records()
result = repr(df)
assert result == expected
def test_to_records_with_inf_record(self):
# GH 48526
expected = """ NaN inf record
0 inf b [0, inf, b]
1 NaN NaN [1, nan, nan]
2 e f [2, e, f]"""
msg = "use_inf_as_na option is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
with option_context("use_inf_as_na", False):
df = DataFrame(
[[np.inf, "b"], [np.nan, np.nan], ["e", "f"]],
columns=[np.nan, np.inf],
)
df["record"] = df[[np.nan, np.inf]].to_records()
result = repr(df)
assert result == expected
def test_masked_ea_with_formatter(self):
# GH#39336
df = DataFrame(
{
"a": Series([0.123456789, 1.123456789], dtype="Float64"),
"b": Series([1, 2], dtype="Int64"),
}
)
result = df.to_string(formatters=["{:.2f}".format, "{:.2f}".format])
expected = """ a b
0 0.12 1.00
1 1.12 2.00"""
assert result == expected
def test_repr_ea_columns(self, any_string_dtype):
# GH#54797
pytest.importorskip("pyarrow")
df = DataFrame({"long_column_name": [1, 2, 3], "col2": [4, 5, 6]})
df.columns = df.columns.astype(any_string_dtype)
expected = """ long_column_name col2
0 1 4
1 2 5
2 3 6"""
assert repr(df) == expected
@pytest.mark.parametrize(
"data,output",
[
([2, complex("nan"), 1], [" 2.0+0.0j", " NaN+0.0j", " 1.0+0.0j"]),
([2, complex("nan"), -1], [" 2.0+0.0j", " NaN+0.0j", "-1.0+0.0j"]),
([-2, complex("nan"), -1], ["-2.0+0.0j", " NaN+0.0j", "-1.0+0.0j"]),
([-1.23j, complex("nan"), -1], ["-0.00-1.23j", " NaN+0.00j", "-1.00+0.00j"]),
([1.23j, complex("nan"), 1.23], [" 0.00+1.23j", " NaN+0.00j", " 1.23+0.00j"]),
(
[-1.23j, complex(np.nan, np.nan), 1],
["-0.00-1.23j", " NaN+ NaNj", " 1.00+0.00j"],
),
(
[-1.23j, complex(1.2, np.nan), 1],
["-0.00-1.23j", " 1.20+ NaNj", " 1.00+0.00j"],
),
(
[-1.23j, complex(np.nan, -1.2), 1],
["-0.00-1.23j", " NaN-1.20j", " 1.00+0.00j"],
),
],
)
@pytest.mark.parametrize("as_frame", [True, False])
def test_repr_with_complex_nans(data, output, as_frame):
# GH#53762, GH#53841
obj = Series(np.array(data))
if as_frame:
obj = obj.to_frame(name="val")
reprs = [f"{i} {val}" for i, val in enumerate(output)]
expected = f"{'val': >{len(reprs[0])}}\n" + "\n".join(reprs)
else:
reprs = [f"{i} {val}" for i, val in enumerate(output)]
expected = "\n".join(reprs) + "\ndtype: complex128"
assert str(obj) == expected, f"\n{str(obj)}\n\n{expected}"