You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

512 lines
18 KiB

"""
Collection of tests asserting things that should be true for
any index subclass except for MultiIndex. Makes use of the `index_flat`
fixture defined in pandas/conftest.py.
"""
from copy import (
copy,
deepcopy,
)
import re
import numpy as np
import pytest
from pandas.compat import IS64
from pandas.compat.numpy import np_version_gte1p25
from pandas.core.dtypes.common import (
is_integer_dtype,
is_numeric_dtype,
)
import pandas as pd
from pandas import (
CategoricalIndex,
MultiIndex,
PeriodIndex,
RangeIndex,
)
import pandas._testing as tm
class TestCommon:
@pytest.mark.parametrize("name", [None, "new_name"])
def test_to_frame(self, name, index_flat, using_copy_on_write):
# see GH#15230, GH#22580
idx = index_flat
if name:
idx_name = name
else:
idx_name = idx.name or 0
df = idx.to_frame(name=idx_name)
assert df.index is idx
assert len(df.columns) == 1
assert df.columns[0] == idx_name
if not using_copy_on_write:
assert df[idx_name].values is not idx.values
df = idx.to_frame(index=False, name=idx_name)
assert df.index is not idx
def test_droplevel(self, index_flat):
# GH 21115
# MultiIndex is tested separately in test_multi.py
index = index_flat
assert index.droplevel([]).equals(index)
for level in [index.name, [index.name]]:
if isinstance(index.name, tuple) and level is index.name:
# GH 21121 : droplevel with tuple name
continue
msg = (
"Cannot remove 1 levels from an index with 1 levels: at least one "
"level must be left."
)
with pytest.raises(ValueError, match=msg):
index.droplevel(level)
for level in "wrong", ["wrong"]:
with pytest.raises(
KeyError,
match=r"'Requested level \(wrong\) does not match index name \(None\)'",
):
index.droplevel(level)
def test_constructor_non_hashable_name(self, index_flat):
# GH 20527
index = index_flat
message = "Index.name must be a hashable type"
renamed = [["1"]]
# With .rename()
with pytest.raises(TypeError, match=message):
index.rename(name=renamed)
# With .set_names()
with pytest.raises(TypeError, match=message):
index.set_names(names=renamed)
def test_constructor_unwraps_index(self, index_flat):
a = index_flat
# Passing dtype is necessary for Index([True, False], dtype=object)
# case.
b = type(a)(a, dtype=a.dtype)
tm.assert_equal(a._data, b._data)
def test_to_flat_index(self, index_flat):
# 22866
index = index_flat
result = index.to_flat_index()
tm.assert_index_equal(result, index)
def test_set_name_methods(self, index_flat):
# MultiIndex tested separately
index = index_flat
new_name = "This is the new name for this index"
original_name = index.name
new_ind = index.set_names([new_name])
assert new_ind.name == new_name
assert index.name == original_name
res = index.rename(new_name, inplace=True)
# should return None
assert res is None
assert index.name == new_name
assert index.names == [new_name]
with pytest.raises(ValueError, match="Level must be None"):
index.set_names("a", level=0)
# rename in place just leaves tuples and other containers alone
name = ("A", "B")
index.rename(name, inplace=True)
assert index.name == name
assert index.names == [name]
@pytest.mark.xfail
def test_set_names_single_label_no_level(self, index_flat):
with pytest.raises(TypeError, match="list-like"):
# should still fail even if it would be the right length
index_flat.set_names("a")
def test_copy_and_deepcopy(self, index_flat):
index = index_flat
for func in (copy, deepcopy):
idx_copy = func(index)
assert idx_copy is not index
assert idx_copy.equals(index)
new_copy = index.copy(deep=True, name="banana")
assert new_copy.name == "banana"
def test_copy_name(self, index_flat):
# GH#12309: Check that the "name" argument
# passed at initialization is honored.
index = index_flat
first = type(index)(index, copy=True, name="mario")
second = type(first)(first, copy=False)
# Even though "copy=False", we want a new object.
assert first is not second
tm.assert_index_equal(first, second)
# Not using tm.assert_index_equal() since names differ.
assert index.equals(first)
assert first.name == "mario"
assert second.name == "mario"
# TODO: belongs in series arithmetic tests?
s1 = pd.Series(2, index=first)
s2 = pd.Series(3, index=second[:-1])
# See GH#13365
s3 = s1 * s2
assert s3.index.name == "mario"
def test_copy_name2(self, index_flat):
# GH#35592
index = index_flat
assert index.copy(name="mario").name == "mario"
with pytest.raises(ValueError, match="Length of new names must be 1, got 2"):
index.copy(name=["mario", "luigi"])
msg = f"{type(index).__name__}.name must be a hashable type"
with pytest.raises(TypeError, match=msg):
index.copy(name=[["mario"]])
def test_unique_level(self, index_flat):
# don't test a MultiIndex here (as its tested separated)
index = index_flat
# GH 17896
expected = index.drop_duplicates()
for level in [0, index.name, None]:
result = index.unique(level=level)
tm.assert_index_equal(result, expected)
msg = "Too many levels: Index has only 1 level, not 4"
with pytest.raises(IndexError, match=msg):
index.unique(level=3)
msg = (
rf"Requested level \(wrong\) does not match index name "
rf"\({re.escape(index.name.__repr__())}\)"
)
with pytest.raises(KeyError, match=msg):
index.unique(level="wrong")
def test_unique(self, index_flat):
# MultiIndex tested separately
index = index_flat
if not len(index):
pytest.skip("Skip check for empty Index and MultiIndex")
idx = index[[0] * 5]
idx_unique = index[[0]]
# We test against `idx_unique`, so first we make sure it's unique
# and doesn't contain nans.
assert idx_unique.is_unique is True
try:
assert idx_unique.hasnans is False
except NotImplementedError:
pass
result = idx.unique()
tm.assert_index_equal(result, idx_unique)
# nans:
if not index._can_hold_na:
pytest.skip("Skip na-check if index cannot hold na")
vals = index._values[[0] * 5]
vals[0] = np.nan
vals_unique = vals[:2]
idx_nan = index._shallow_copy(vals)
idx_unique_nan = index._shallow_copy(vals_unique)
assert idx_unique_nan.is_unique is True
assert idx_nan.dtype == index.dtype
assert idx_unique_nan.dtype == index.dtype
expected = idx_unique_nan
for pos, i in enumerate([idx_nan, idx_unique_nan]):
result = i.unique()
tm.assert_index_equal(result, expected)
@pytest.mark.filterwarnings("ignore:Period with BDay freq:FutureWarning")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_searchsorted_monotonic(self, index_flat, request):
# GH17271
index = index_flat
# not implemented for tuple searches in MultiIndex
# or Intervals searches in IntervalIndex
if isinstance(index, pd.IntervalIndex):
mark = pytest.mark.xfail(
reason="IntervalIndex.searchsorted does not support Interval arg",
raises=NotImplementedError,
)
request.applymarker(mark)
# nothing to test if the index is empty
if index.empty:
pytest.skip("Skip check for empty Index")
value = index[0]
# determine the expected results (handle dupes for 'right')
expected_left, expected_right = 0, (index == value).argmin()
if expected_right == 0:
# all values are the same, expected_right should be length
expected_right = len(index)
# test _searchsorted_monotonic in all cases
# test searchsorted only for increasing
if index.is_monotonic_increasing:
ssm_left = index._searchsorted_monotonic(value, side="left")
assert expected_left == ssm_left
ssm_right = index._searchsorted_monotonic(value, side="right")
assert expected_right == ssm_right
ss_left = index.searchsorted(value, side="left")
assert expected_left == ss_left
ss_right = index.searchsorted(value, side="right")
assert expected_right == ss_right
elif index.is_monotonic_decreasing:
ssm_left = index._searchsorted_monotonic(value, side="left")
assert expected_left == ssm_left
ssm_right = index._searchsorted_monotonic(value, side="right")
assert expected_right == ssm_right
else:
# non-monotonic should raise.
msg = "index must be monotonic increasing or decreasing"
with pytest.raises(ValueError, match=msg):
index._searchsorted_monotonic(value, side="left")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_drop_duplicates(self, index_flat, keep):
# MultiIndex is tested separately
index = index_flat
if isinstance(index, RangeIndex):
pytest.skip(
"RangeIndex is tested in test_drop_duplicates_no_duplicates "
"as it cannot hold duplicates"
)
if len(index) == 0:
pytest.skip(
"empty index is tested in test_drop_duplicates_no_duplicates "
"as it cannot hold duplicates"
)
# make unique index
holder = type(index)
unique_values = list(set(index))
dtype = index.dtype if is_numeric_dtype(index) else None
unique_idx = holder(unique_values, dtype=dtype)
# make duplicated index
n = len(unique_idx)
duplicated_selection = np.random.default_rng(2).choice(n, int(n * 1.5))
idx = holder(unique_idx.values[duplicated_selection])
# Series.duplicated is tested separately
expected_duplicated = (
pd.Series(duplicated_selection).duplicated(keep=keep).values
)
tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected_duplicated)
# Series.drop_duplicates is tested separately
expected_dropped = holder(pd.Series(idx).drop_duplicates(keep=keep))
tm.assert_index_equal(idx.drop_duplicates(keep=keep), expected_dropped)
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_drop_duplicates_no_duplicates(self, index_flat):
# MultiIndex is tested separately
index = index_flat
# make unique index
if isinstance(index, RangeIndex):
# RangeIndex cannot have duplicates
unique_idx = index
else:
holder = type(index)
unique_values = list(set(index))
dtype = index.dtype if is_numeric_dtype(index) else None
unique_idx = holder(unique_values, dtype=dtype)
# check on unique index
expected_duplicated = np.array([False] * len(unique_idx), dtype="bool")
tm.assert_numpy_array_equal(unique_idx.duplicated(), expected_duplicated)
result_dropped = unique_idx.drop_duplicates()
tm.assert_index_equal(result_dropped, unique_idx)
# validate shallow copy
assert result_dropped is not unique_idx
def test_drop_duplicates_inplace(self, index):
msg = r"drop_duplicates\(\) got an unexpected keyword argument"
with pytest.raises(TypeError, match=msg):
index.drop_duplicates(inplace=True)
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_has_duplicates(self, index_flat):
# MultiIndex tested separately in:
# tests/indexes/multi/test_unique_and_duplicates.
index = index_flat
holder = type(index)
if not len(index) or isinstance(index, RangeIndex):
# MultiIndex tested separately in:
# tests/indexes/multi/test_unique_and_duplicates.
# RangeIndex is unique by definition.
pytest.skip("Skip check for empty Index, MultiIndex, and RangeIndex")
idx = holder([index[0]] * 5)
assert idx.is_unique is False
assert idx.has_duplicates is True
@pytest.mark.parametrize(
"dtype",
["int64", "uint64", "float64", "category", "datetime64[ns]", "timedelta64[ns]"],
)
def test_astype_preserves_name(self, index, dtype):
# https://github.com/pandas-dev/pandas/issues/32013
if isinstance(index, MultiIndex):
index.names = ["idx" + str(i) for i in range(index.nlevels)]
else:
index.name = "idx"
warn = None
if index.dtype.kind == "c" and dtype in ["float64", "int64", "uint64"]:
# imaginary components discarded
if np_version_gte1p25:
warn = np.exceptions.ComplexWarning
else:
warn = np.ComplexWarning
is_pyarrow_str = str(index.dtype) == "string[pyarrow]" and dtype == "category"
try:
# Some of these conversions cannot succeed so we use a try / except
with tm.assert_produces_warning(
warn,
raise_on_extra_warnings=is_pyarrow_str,
check_stacklevel=False,
):
result = index.astype(dtype)
except (ValueError, TypeError, NotImplementedError, SystemError):
return
if isinstance(index, MultiIndex):
assert result.names == index.names
else:
assert result.name == index.name
def test_hasnans_isnans(self, index_flat):
# GH#11343, added tests for hasnans / isnans
index = index_flat
# cases in indices doesn't include NaN
idx = index.copy(deep=True)
expected = np.array([False] * len(idx), dtype=bool)
tm.assert_numpy_array_equal(idx._isnan, expected)
assert idx.hasnans is False
idx = index.copy(deep=True)
values = idx._values
if len(index) == 0:
return
elif is_integer_dtype(index.dtype):
return
elif index.dtype == bool:
# values[1] = np.nan below casts to True!
return
values[1] = np.nan
idx = type(index)(values)
expected = np.array([False] * len(idx), dtype=bool)
expected[1] = True
tm.assert_numpy_array_equal(idx._isnan, expected)
assert idx.hasnans is True
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
@pytest.mark.parametrize("na_position", [None, "middle"])
def test_sort_values_invalid_na_position(index_with_missing, na_position):
with pytest.raises(ValueError, match=f"invalid na_position: {na_position}"):
index_with_missing.sort_values(na_position=na_position)
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
@pytest.mark.parametrize("na_position", ["first", "last"])
def test_sort_values_with_missing(index_with_missing, na_position, request):
# GH 35584. Test that sort_values works with missing values,
# sort non-missing and place missing according to na_position
if isinstance(index_with_missing, CategoricalIndex):
request.applymarker(
pytest.mark.xfail(
reason="missing value sorting order not well-defined", strict=False
)
)
missing_count = np.sum(index_with_missing.isna())
not_na_vals = index_with_missing[index_with_missing.notna()].values
sorted_values = np.sort(not_na_vals)
if na_position == "first":
sorted_values = np.concatenate([[None] * missing_count, sorted_values])
else:
sorted_values = np.concatenate([sorted_values, [None] * missing_count])
# Explicitly pass dtype needed for Index backed by EA e.g. IntegerArray
expected = type(index_with_missing)(sorted_values, dtype=index_with_missing.dtype)
result = index_with_missing.sort_values(na_position=na_position)
tm.assert_index_equal(result, expected)
def test_ndarray_compat_properties(index):
if isinstance(index, PeriodIndex) and not IS64:
pytest.skip("Overflow")
idx = index
assert idx.T.equals(idx)
assert idx.transpose().equals(idx)
values = idx.values
assert idx.shape == values.shape
assert idx.ndim == values.ndim
assert idx.size == values.size
if not isinstance(index, (RangeIndex, MultiIndex)):
# These two are not backed by an ndarray
assert idx.nbytes == values.nbytes
# test for validity
idx.nbytes
idx.values.nbytes
def test_compare_read_only_array():
# GH#57130
arr = np.array([], dtype=object)
arr.flags.writeable = False
idx = pd.Index(arr)
result = idx > 69
assert result.dtype == bool