You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

433 lines
15 KiB

"""
Tests for the Index constructor conducting inference.
"""
from datetime import (
datetime,
timedelta,
timezone,
)
from decimal import Decimal
import numpy as np
import pytest
from pandas._libs.tslibs.timezones import maybe_get_tz
from pandas import (
NA,
Categorical,
CategoricalIndex,
DatetimeIndex,
Index,
IntervalIndex,
MultiIndex,
NaT,
PeriodIndex,
Series,
TimedeltaIndex,
Timestamp,
array,
date_range,
period_range,
timedelta_range,
)
import pandas._testing as tm
class TestIndexConstructorInference:
def test_object_all_bools(self):
# GH#49594 match Series behavior on ndarray[object] of all bools
arr = np.array([True, False], dtype=object)
res = Index(arr)
assert res.dtype == object
# since the point is matching Series behavior, let's double check
assert Series(arr).dtype == object
def test_object_all_complex(self):
# GH#49594 match Series behavior on ndarray[object] of all complex
arr = np.array([complex(1), complex(2)], dtype=object)
res = Index(arr)
assert res.dtype == object
# since the point is matching Series behavior, let's double check
assert Series(arr).dtype == object
@pytest.mark.parametrize("val", [NaT, None, np.nan, float("nan")])
def test_infer_nat(self, val):
# GH#49340 all NaT/None/nan and at least 1 NaT -> datetime64[ns],
# matching Series behavior
values = [NaT, val]
idx = Index(values)
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
idx = Index(values[::-1])
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
idx = Index(np.array(values, dtype=object))
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
idx = Index(np.array(values, dtype=object)[::-1])
assert idx.dtype == "datetime64[ns]" and idx.isna().all()
@pytest.mark.parametrize("na_value", [None, np.nan])
@pytest.mark.parametrize("vtype", [list, tuple, iter])
def test_construction_list_tuples_nan(self, na_value, vtype):
# GH#18505 : valid tuples containing NaN
values = [(1, "two"), (3.0, na_value)]
result = Index(vtype(values))
expected = MultiIndex.from_tuples(values)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"dtype",
[int, "int64", "int32", "int16", "int8", "uint64", "uint32", "uint16", "uint8"],
)
def test_constructor_int_dtype_float(self, dtype):
# GH#18400
expected = Index([0, 1, 2, 3], dtype=dtype)
result = Index([0.0, 1.0, 2.0, 3.0], dtype=dtype)
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("cast_index", [True, False])
@pytest.mark.parametrize(
"vals", [[True, False, True], np.array([True, False, True], dtype=bool)]
)
def test_constructor_dtypes_to_object(self, cast_index, vals):
if cast_index:
index = Index(vals, dtype=bool)
else:
index = Index(vals)
assert type(index) is Index
assert index.dtype == bool
def test_constructor_categorical_to_object(self):
# GH#32167 Categorical data and dtype=object should return object-dtype
ci = CategoricalIndex(range(5))
result = Index(ci, dtype=object)
assert not isinstance(result, CategoricalIndex)
def test_constructor_infer_periodindex(self):
xp = period_range("2012-1-1", freq="M", periods=3)
rs = Index(xp)
tm.assert_index_equal(rs, xp)
assert isinstance(rs, PeriodIndex)
def test_from_list_of_periods(self):
rng = period_range("1/1/2000", periods=20, freq="D")
periods = list(rng)
result = Index(periods)
assert isinstance(result, PeriodIndex)
@pytest.mark.parametrize("pos", [0, 1])
@pytest.mark.parametrize(
"klass,dtype,ctor",
[
(DatetimeIndex, "datetime64[ns]", np.datetime64("nat")),
(TimedeltaIndex, "timedelta64[ns]", np.timedelta64("nat")),
],
)
def test_constructor_infer_nat_dt_like(
self, pos, klass, dtype, ctor, nulls_fixture, request
):
if isinstance(nulls_fixture, Decimal):
# We dont cast these to datetime64/timedelta64
pytest.skip(
f"We don't cast {type(nulls_fixture).__name__} to "
"datetime64/timedelta64"
)
expected = klass([NaT, NaT])
assert expected.dtype == dtype
data = [ctor]
data.insert(pos, nulls_fixture)
warn = None
if nulls_fixture is NA:
expected = Index([NA, NaT])
mark = pytest.mark.xfail(reason="Broken with np.NaT ctor; see GH 31884")
request.applymarker(mark)
# GH#35942 numpy will emit a DeprecationWarning within the
# assert_index_equal calls. Since we can't do anything
# about it until GH#31884 is fixed, we suppress that warning.
warn = DeprecationWarning
result = Index(data)
with tm.assert_produces_warning(warn):
tm.assert_index_equal(result, expected)
result = Index(np.array(data, dtype=object))
with tm.assert_produces_warning(warn):
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("swap_objs", [True, False])
def test_constructor_mixed_nat_objs_infers_object(self, swap_objs):
# mixed np.datetime64/timedelta64 nat results in object
data = [np.datetime64("nat"), np.timedelta64("nat")]
if swap_objs:
data = data[::-1]
expected = Index(data, dtype=object)
tm.assert_index_equal(Index(data), expected)
tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
@pytest.mark.parametrize("swap_objs", [True, False])
def test_constructor_datetime_and_datetime64(self, swap_objs):
data = [Timestamp(2021, 6, 8, 9, 42), np.datetime64("now")]
if swap_objs:
data = data[::-1]
expected = DatetimeIndex(data)
tm.assert_index_equal(Index(data), expected)
tm.assert_index_equal(Index(np.array(data, dtype=object)), expected)
def test_constructor_datetimes_mixed_tzs(self):
# https://github.com/pandas-dev/pandas/pull/55793/files#r1383719998
tz = maybe_get_tz("US/Central")
dt1 = datetime(2020, 1, 1, tzinfo=tz)
dt2 = datetime(2020, 1, 1, tzinfo=timezone.utc)
result = Index([dt1, dt2])
expected = Index([dt1, dt2], dtype=object)
tm.assert_index_equal(result, expected)
class TestDtypeEnforced:
# check we don't silently ignore the dtype keyword
def test_constructor_object_dtype_with_ea_data(self, any_numeric_ea_dtype):
# GH#45206
arr = array([0], dtype=any_numeric_ea_dtype)
idx = Index(arr, dtype=object)
assert idx.dtype == object
@pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
def test_constructor_range_values_mismatched_dtype(self, dtype):
rng = Index(range(5))
result = Index(rng, dtype=dtype)
assert result.dtype == dtype
result = Index(range(5), dtype=dtype)
assert result.dtype == dtype
@pytest.mark.parametrize("dtype", [object, "float64", "uint64", "category"])
def test_constructor_categorical_values_mismatched_non_ea_dtype(self, dtype):
cat = Categorical([1, 2, 3])
result = Index(cat, dtype=dtype)
assert result.dtype == dtype
def test_constructor_categorical_values_mismatched_dtype(self):
dti = date_range("2016-01-01", periods=3)
cat = Categorical(dti)
result = Index(cat, dti.dtype)
tm.assert_index_equal(result, dti)
dti2 = dti.tz_localize("Asia/Tokyo")
cat2 = Categorical(dti2)
result = Index(cat2, dti2.dtype)
tm.assert_index_equal(result, dti2)
ii = IntervalIndex.from_breaks(range(5))
cat3 = Categorical(ii)
result = Index(cat3, dtype=ii.dtype)
tm.assert_index_equal(result, ii)
def test_constructor_ea_values_mismatched_categorical_dtype(self):
dti = date_range("2016-01-01", periods=3)
result = Index(dti, dtype="category")
expected = CategoricalIndex(dti)
tm.assert_index_equal(result, expected)
dti2 = date_range("2016-01-01", periods=3, tz="US/Pacific")
result = Index(dti2, dtype="category")
expected = CategoricalIndex(dti2)
tm.assert_index_equal(result, expected)
def test_constructor_period_values_mismatched_dtype(self):
pi = period_range("2016-01-01", periods=3, freq="D")
result = Index(pi, dtype="category")
expected = CategoricalIndex(pi)
tm.assert_index_equal(result, expected)
def test_constructor_timedelta64_values_mismatched_dtype(self):
# check we don't silently ignore the dtype keyword
tdi = timedelta_range("4 Days", periods=5)
result = Index(tdi, dtype="category")
expected = CategoricalIndex(tdi)
tm.assert_index_equal(result, expected)
def test_constructor_interval_values_mismatched_dtype(self):
dti = date_range("2016-01-01", periods=3)
ii = IntervalIndex.from_breaks(dti)
result = Index(ii, dtype="category")
expected = CategoricalIndex(ii)
tm.assert_index_equal(result, expected)
def test_constructor_datetime64_values_mismatched_period_dtype(self):
dti = date_range("2016-01-01", periods=3)
result = Index(dti, dtype="Period[D]")
expected = dti.to_period("D")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("dtype", ["int64", "uint64"])
def test_constructor_int_dtype_nan_raises(self, dtype):
# see GH#15187
data = [np.nan]
msg = "cannot convert"
with pytest.raises(ValueError, match=msg):
Index(data, dtype=dtype)
@pytest.mark.parametrize(
"vals",
[
[1, 2, 3],
np.array([1, 2, 3]),
np.array([1, 2, 3], dtype=int),
# below should coerce
[1.0, 2.0, 3.0],
np.array([1.0, 2.0, 3.0], dtype=float),
],
)
def test_constructor_dtypes_to_int(self, vals, any_int_numpy_dtype):
dtype = any_int_numpy_dtype
index = Index(vals, dtype=dtype)
assert index.dtype == dtype
@pytest.mark.parametrize(
"vals",
[
[1, 2, 3],
[1.0, 2.0, 3.0],
np.array([1.0, 2.0, 3.0]),
np.array([1, 2, 3], dtype=int),
np.array([1.0, 2.0, 3.0], dtype=float),
],
)
def test_constructor_dtypes_to_float(self, vals, float_numpy_dtype):
dtype = float_numpy_dtype
index = Index(vals, dtype=dtype)
assert index.dtype == dtype
@pytest.mark.parametrize(
"vals",
[
[1, 2, 3],
np.array([1, 2, 3], dtype=int),
np.array(["2011-01-01", "2011-01-02"], dtype="datetime64[ns]"),
[datetime(2011, 1, 1), datetime(2011, 1, 2)],
],
)
def test_constructor_dtypes_to_categorical(self, vals):
index = Index(vals, dtype="category")
assert isinstance(index, CategoricalIndex)
@pytest.mark.parametrize("cast_index", [True, False])
@pytest.mark.parametrize(
"vals",
[
Index(np.array([np.datetime64("2011-01-01"), np.datetime64("2011-01-02")])),
Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]),
],
)
def test_constructor_dtypes_to_datetime(self, cast_index, vals):
if cast_index:
index = Index(vals, dtype=object)
assert isinstance(index, Index)
assert index.dtype == object
else:
index = Index(vals)
assert isinstance(index, DatetimeIndex)
@pytest.mark.parametrize("cast_index", [True, False])
@pytest.mark.parametrize(
"vals",
[
np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]),
[timedelta(1), timedelta(1)],
],
)
def test_constructor_dtypes_to_timedelta(self, cast_index, vals):
if cast_index:
index = Index(vals, dtype=object)
assert isinstance(index, Index)
assert index.dtype == object
else:
index = Index(vals)
assert isinstance(index, TimedeltaIndex)
def test_pass_timedeltaindex_to_index(self):
rng = timedelta_range("1 days", "10 days")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pytimedelta(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
def test_pass_datetimeindex_to_index(self):
# GH#1396
rng = date_range("1/1/2000", "3/1/2000")
idx = Index(rng, dtype=object)
expected = Index(rng.to_pydatetime(), dtype=object)
tm.assert_numpy_array_equal(idx.values, expected.values)
class TestIndexConstructorUnwrapping:
# Test passing different arraylike values to pd.Index
@pytest.mark.parametrize("klass", [Index, DatetimeIndex])
def test_constructor_from_series_dt64(self, klass):
stamps = [Timestamp("20110101"), Timestamp("20120101"), Timestamp("20130101")]
expected = DatetimeIndex(stamps)
ser = Series(stamps)
result = klass(ser)
tm.assert_index_equal(result, expected)
def test_constructor_no_pandas_array(self):
ser = Series([1, 2, 3])
result = Index(ser.array)
expected = Index([1, 2, 3])
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"array",
[
np.arange(5),
np.array(["a", "b", "c"]),
date_range("2000-01-01", periods=3).values,
],
)
def test_constructor_ndarray_like(self, array):
# GH#5460#issuecomment-44474502
# it should be possible to convert any object that satisfies the numpy
# ndarray interface directly into an Index
class ArrayLike:
def __init__(self, array) -> None:
self.array = array
def __array__(self, dtype=None) -> np.ndarray:
return self.array
expected = Index(array)
result = Index(ArrayLike(array))
tm.assert_index_equal(result, expected)
class TestIndexConstructionErrors:
def test_constructor_overflow_int64(self):
# see GH#15832
msg = (
"The elements provided in the data cannot "
"all be casted to the dtype int64"
)
with pytest.raises(OverflowError, match=msg):
Index([np.iinfo(np.uint64).max - 1], dtype="int64")