You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

172 lines
4.8 KiB

import numpy as np
import pytest
from pandas import (
DataFrame,
MultiIndex,
Series,
)
import pandas._testing as tm
@pytest.fixture
def simple_multiindex_dataframe():
"""
Factory function to create simple 3 x 3 dataframe with
both columns and row MultiIndex using supplied data or
random data by default.
"""
data = np.random.default_rng(2).standard_normal((3, 3))
return DataFrame(
data, columns=[[2, 2, 4], [6, 8, 10]], index=[[4, 4, 8], [8, 10, 12]]
)
@pytest.mark.parametrize(
"indexer, expected",
[
(
lambda df: df.iloc[0],
lambda arr: Series(arr[0], index=[[2, 2, 4], [6, 8, 10]], name=(4, 8)),
),
(
lambda df: df.iloc[2],
lambda arr: Series(arr[2], index=[[2, 2, 4], [6, 8, 10]], name=(8, 12)),
),
(
lambda df: df.iloc[:, 2],
lambda arr: Series(arr[:, 2], index=[[4, 4, 8], [8, 10, 12]], name=(4, 10)),
),
],
)
def test_iloc_returns_series(indexer, expected, simple_multiindex_dataframe):
df = simple_multiindex_dataframe
arr = df.values
result = indexer(df)
expected = expected(arr)
tm.assert_series_equal(result, expected)
def test_iloc_returns_dataframe(simple_multiindex_dataframe):
df = simple_multiindex_dataframe
result = df.iloc[[0, 1]]
expected = df.xs(4, drop_level=False)
tm.assert_frame_equal(result, expected)
def test_iloc_returns_scalar(simple_multiindex_dataframe):
df = simple_multiindex_dataframe
arr = df.values
result = df.iloc[2, 2]
expected = arr[2, 2]
assert result == expected
def test_iloc_getitem_multiple_items():
# GH 5528
tup = zip(*[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
index = MultiIndex.from_tuples(tup)
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), index=index)
result = df.iloc[[2, 3]]
expected = df.xs("b", drop_level=False)
tm.assert_frame_equal(result, expected)
def test_iloc_getitem_labels():
# this is basically regular indexing
arr = np.random.default_rng(2).standard_normal((4, 3))
df = DataFrame(
arr,
columns=[["i", "i", "j"], ["A", "A", "B"]],
index=[["i", "i", "j", "k"], ["X", "X", "Y", "Y"]],
)
result = df.iloc[2, 2]
expected = arr[2, 2]
assert result == expected
def test_frame_getitem_slice(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.iloc[:4]
expected = df[:4]
tm.assert_frame_equal(result, expected)
def test_frame_setitem_slice(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
df.iloc[:4] = 0
assert (df.values[:4] == 0).all()
assert (df.values[4:] != 0).all()
def test_indexing_ambiguity_bug_1678():
# GH 1678
columns = MultiIndex.from_tuples(
[("Ohio", "Green"), ("Ohio", "Red"), ("Colorado", "Green")]
)
index = MultiIndex.from_tuples([("a", 1), ("a", 2), ("b", 1), ("b", 2)])
df = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns)
result = df.iloc[:, 1]
expected = df.loc[:, ("Ohio", "Red")]
tm.assert_series_equal(result, expected)
def test_iloc_integer_locations():
# GH 13797
data = [
["str00", "str01"],
["str10", "str11"],
["str20", "srt21"],
["str30", "str31"],
["str40", "str41"],
]
index = MultiIndex.from_tuples(
[("CC", "A"), ("CC", "B"), ("CC", "B"), ("BB", "a"), ("BB", "b")]
)
expected = DataFrame(data)
df = DataFrame(data, index=index)
result = DataFrame([[df.iloc[r, c] for c in range(2)] for r in range(5)])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data, indexes, values, expected_k",
[
# test without indexer value in first level of MultiIndex
([[2, 22, 5], [2, 33, 6]], [0, -1, 1], [2, 3, 1], [7, 10]),
# test like code sample 1 in the issue
([[1, 22, 555], [1, 33, 666]], [0, -1, 1], [200, 300, 100], [755, 1066]),
# test like code sample 2 in the issue
([[1, 3, 7], [2, 4, 8]], [0, -1, 1], [10, 10, 1000], [17, 1018]),
# test like code sample 3 in the issue
([[1, 11, 4], [2, 22, 5], [3, 33, 6]], [0, -1, 1], [4, 7, 10], [8, 15, 13]),
],
)
def test_iloc_setitem_int_multiindex_series(data, indexes, values, expected_k):
# GH17148
df = DataFrame(data=data, columns=["i", "j", "k"])
df = df.set_index(["i", "j"])
series = df.k.copy()
for i, v in zip(indexes, values):
series.iloc[i] += v
df["k"] = expected_k
expected = df.k
tm.assert_series_equal(series, expected)
def test_getitem_iloc(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
result = df.iloc[2]
expected = df.xs(df.index[2])
tm.assert_series_equal(result, expected)