You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1512 lines
54 KiB

from datetime import (
date,
datetime,
timedelta,
)
from functools import partial
from io import BytesIO
import os
import re
import numpy as np
import pytest
from pandas.compat import is_platform_windows
from pandas.compat._constants import PY310
from pandas.compat._optional import import_optional_dependency
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
date_range,
option_context,
)
import pandas._testing as tm
from pandas.io.excel import (
ExcelFile,
ExcelWriter,
_OpenpyxlWriter,
_XlsxWriter,
register_writer,
)
from pandas.io.excel._util import _writers
if is_platform_windows():
pytestmark = pytest.mark.single_cpu
def get_exp_unit(path: str) -> str:
return "ns"
@pytest.fixture
def frame(float_frame):
"""
Returns the first ten items in fixture "float_frame".
"""
return float_frame[:10]
@pytest.fixture(params=[True, False])
def merge_cells(request):
return request.param
@pytest.fixture
def path(ext):
"""
Fixture to open file for use in each test case.
"""
with tm.ensure_clean(ext) as file_path:
yield file_path
@pytest.fixture
def set_engine(engine, ext):
"""
Fixture to set engine for use in each test case.
Rather than requiring `engine=...` to be provided explicitly as an
argument in each test, this fixture sets a global option to dictate
which engine should be used to write Excel files. After executing
the test it rolls back said change to the global option.
"""
option_name = f"io.excel.{ext.strip('.')}.writer"
with option_context(option_name, engine):
yield
@pytest.mark.parametrize(
"ext",
[
pytest.param(".xlsx", marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")]),
pytest.param(".xlsm", marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")]),
pytest.param(
".xlsx", marks=[td.skip_if_no("xlsxwriter"), td.skip_if_no("xlrd")]
),
pytest.param(".ods", marks=td.skip_if_no("odf")),
],
)
class TestRoundTrip:
@pytest.mark.parametrize(
"header,expected",
[(None, DataFrame([np.nan] * 4)), (0, DataFrame({"Unnamed: 0": [np.nan] * 3}))],
)
def test_read_one_empty_col_no_header(self, ext, header, expected):
# xref gh-12292
filename = "no_header"
df = DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]])
with tm.ensure_clean(ext) as path:
df.to_excel(path, sheet_name=filename, index=False, header=False)
result = pd.read_excel(
path, sheet_name=filename, usecols=[0], header=header
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"header,expected",
[(None, DataFrame([0] + [np.nan] * 4)), (0, DataFrame([np.nan] * 4))],
)
def test_read_one_empty_col_with_header(self, ext, header, expected):
filename = "with_header"
df = DataFrame([["", 1, 100], ["", 2, 200], ["", 3, 300], ["", 4, 400]])
with tm.ensure_clean(ext) as path:
df.to_excel(path, sheet_name="with_header", index=False, header=True)
result = pd.read_excel(
path, sheet_name=filename, usecols=[0], header=header
)
tm.assert_frame_equal(result, expected)
def test_set_column_names_in_parameter(self, ext):
# GH 12870 : pass down column names associated with
# keyword argument names
refdf = DataFrame([[1, "foo"], [2, "bar"], [3, "baz"]], columns=["a", "b"])
with tm.ensure_clean(ext) as pth:
with ExcelWriter(pth) as writer:
refdf.to_excel(
writer, sheet_name="Data_no_head", header=False, index=False
)
refdf.to_excel(writer, sheet_name="Data_with_head", index=False)
refdf.columns = ["A", "B"]
with ExcelFile(pth) as reader:
xlsdf_no_head = pd.read_excel(
reader, sheet_name="Data_no_head", header=None, names=["A", "B"]
)
xlsdf_with_head = pd.read_excel(
reader,
sheet_name="Data_with_head",
index_col=None,
names=["A", "B"],
)
tm.assert_frame_equal(xlsdf_no_head, refdf)
tm.assert_frame_equal(xlsdf_with_head, refdf)
def test_creating_and_reading_multiple_sheets(self, ext):
# see gh-9450
#
# Test reading multiple sheets, from a runtime
# created Excel file with multiple sheets.
def tdf(col_sheet_name):
d, i = [11, 22, 33], [1, 2, 3]
return DataFrame(d, i, columns=[col_sheet_name])
sheets = ["AAA", "BBB", "CCC"]
dfs = [tdf(s) for s in sheets]
dfs = dict(zip(sheets, dfs))
with tm.ensure_clean(ext) as pth:
with ExcelWriter(pth) as ew:
for sheetname, df in dfs.items():
df.to_excel(ew, sheet_name=sheetname)
dfs_returned = pd.read_excel(pth, sheet_name=sheets, index_col=0)
for s in sheets:
tm.assert_frame_equal(dfs[s], dfs_returned[s])
def test_read_excel_multiindex_empty_level(self, ext):
# see gh-12453
with tm.ensure_clean(ext) as path:
df = DataFrame(
{
("One", "x"): {0: 1},
("Two", "X"): {0: 3},
("Two", "Y"): {0: 7},
("Zero", ""): {0: 0},
}
)
expected = DataFrame(
{
("One", "x"): {0: 1},
("Two", "X"): {0: 3},
("Two", "Y"): {0: 7},
("Zero", "Unnamed: 4_level_1"): {0: 0},
}
)
df.to_excel(path)
actual = pd.read_excel(path, header=[0, 1], index_col=0)
tm.assert_frame_equal(actual, expected)
df = DataFrame(
{
("Beg", ""): {0: 0},
("Middle", "x"): {0: 1},
("Tail", "X"): {0: 3},
("Tail", "Y"): {0: 7},
}
)
expected = DataFrame(
{
("Beg", "Unnamed: 1_level_1"): {0: 0},
("Middle", "x"): {0: 1},
("Tail", "X"): {0: 3},
("Tail", "Y"): {0: 7},
}
)
df.to_excel(path)
actual = pd.read_excel(path, header=[0, 1], index_col=0)
tm.assert_frame_equal(actual, expected)
@pytest.mark.parametrize("c_idx_names", ["a", None])
@pytest.mark.parametrize("r_idx_names", ["b", None])
@pytest.mark.parametrize("c_idx_levels", [1, 3])
@pytest.mark.parametrize("r_idx_levels", [1, 3])
def test_excel_multindex_roundtrip(
self, ext, c_idx_names, r_idx_names, c_idx_levels, r_idx_levels, request
):
# see gh-4679
with tm.ensure_clean(ext) as pth:
# Empty name case current read in as
# unnamed levels, not Nones.
check_names = bool(r_idx_names) or r_idx_levels <= 1
if c_idx_levels == 1:
columns = Index(list("abcde"))
else:
columns = MultiIndex.from_arrays(
[range(5) for _ in range(c_idx_levels)],
names=[f"{c_idx_names}-{i}" for i in range(c_idx_levels)],
)
if r_idx_levels == 1:
index = Index(list("ghijk"))
else:
index = MultiIndex.from_arrays(
[range(5) for _ in range(r_idx_levels)],
names=[f"{r_idx_names}-{i}" for i in range(r_idx_levels)],
)
df = DataFrame(
1.1 * np.ones((5, 5)),
columns=columns,
index=index,
)
df.to_excel(pth)
act = pd.read_excel(
pth,
index_col=list(range(r_idx_levels)),
header=list(range(c_idx_levels)),
)
tm.assert_frame_equal(df, act, check_names=check_names)
df.iloc[0, :] = np.nan
df.to_excel(pth)
act = pd.read_excel(
pth,
index_col=list(range(r_idx_levels)),
header=list(range(c_idx_levels)),
)
tm.assert_frame_equal(df, act, check_names=check_names)
df.iloc[-1, :] = np.nan
df.to_excel(pth)
act = pd.read_excel(
pth,
index_col=list(range(r_idx_levels)),
header=list(range(c_idx_levels)),
)
tm.assert_frame_equal(df, act, check_names=check_names)
def test_read_excel_parse_dates(self, ext):
# see gh-11544, gh-12051
df = DataFrame(
{"col": [1, 2, 3], "date_strings": date_range("2012-01-01", periods=3)}
)
df2 = df.copy()
df2["date_strings"] = df2["date_strings"].dt.strftime("%m/%d/%Y")
with tm.ensure_clean(ext) as pth:
df2.to_excel(pth)
res = pd.read_excel(pth, index_col=0)
tm.assert_frame_equal(df2, res)
res = pd.read_excel(pth, parse_dates=["date_strings"], index_col=0)
tm.assert_frame_equal(df, res)
date_parser = lambda x: datetime.strptime(x, "%m/%d/%Y")
with tm.assert_produces_warning(
FutureWarning,
match="use 'date_format' instead",
raise_on_extra_warnings=False,
):
res = pd.read_excel(
pth,
parse_dates=["date_strings"],
date_parser=date_parser,
index_col=0,
)
tm.assert_frame_equal(df, res)
res = pd.read_excel(
pth, parse_dates=["date_strings"], date_format="%m/%d/%Y", index_col=0
)
tm.assert_frame_equal(df, res)
def test_multiindex_interval_datetimes(self, ext):
# GH 30986
midx = MultiIndex.from_arrays(
[
range(4),
pd.interval_range(
start=pd.Timestamp("2020-01-01"), periods=4, freq="6ME"
),
]
)
df = DataFrame(range(4), index=midx)
with tm.ensure_clean(ext) as pth:
df.to_excel(pth)
result = pd.read_excel(pth, index_col=[0, 1])
expected = DataFrame(
range(4),
MultiIndex.from_arrays(
[
range(4),
[
"(2020-01-31 00:00:00, 2020-07-31 00:00:00]",
"(2020-07-31 00:00:00, 2021-01-31 00:00:00]",
"(2021-01-31 00:00:00, 2021-07-31 00:00:00]",
"(2021-07-31 00:00:00, 2022-01-31 00:00:00]",
],
]
),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"engine,ext",
[
pytest.param(
"openpyxl",
".xlsx",
marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")],
),
pytest.param(
"openpyxl",
".xlsm",
marks=[td.skip_if_no("openpyxl"), td.skip_if_no("xlrd")],
),
pytest.param(
"xlsxwriter",
".xlsx",
marks=[td.skip_if_no("xlsxwriter"), td.skip_if_no("xlrd")],
),
pytest.param("odf", ".ods", marks=td.skip_if_no("odf")),
],
)
@pytest.mark.usefixtures("set_engine")
class TestExcelWriter:
def test_excel_sheet_size(self, path):
# GH 26080
breaking_row_count = 2**20 + 1
breaking_col_count = 2**14 + 1
# purposely using two arrays to prevent memory issues while testing
row_arr = np.zeros(shape=(breaking_row_count, 1))
col_arr = np.zeros(shape=(1, breaking_col_count))
row_df = DataFrame(row_arr)
col_df = DataFrame(col_arr)
msg = "sheet is too large"
with pytest.raises(ValueError, match=msg):
row_df.to_excel(path)
with pytest.raises(ValueError, match=msg):
col_df.to_excel(path)
def test_excel_sheet_by_name_raise(self, path):
gt = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
gt.to_excel(path)
with ExcelFile(path) as xl:
df = pd.read_excel(xl, sheet_name=0, index_col=0)
tm.assert_frame_equal(gt, df)
msg = "Worksheet named '0' not found"
with pytest.raises(ValueError, match=msg):
pd.read_excel(xl, "0")
def test_excel_writer_context_manager(self, frame, path):
with ExcelWriter(path) as writer:
frame.to_excel(writer, sheet_name="Data1")
frame2 = frame.copy()
frame2.columns = frame.columns[::-1]
frame2.to_excel(writer, sheet_name="Data2")
with ExcelFile(path) as reader:
found_df = pd.read_excel(reader, sheet_name="Data1", index_col=0)
found_df2 = pd.read_excel(reader, sheet_name="Data2", index_col=0)
tm.assert_frame_equal(found_df, frame)
tm.assert_frame_equal(found_df2, frame2)
def test_roundtrip(self, frame, path):
frame = frame.copy()
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
frame.to_excel(path, sheet_name="test1")
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", index=False)
# test roundtrip
frame.to_excel(path, sheet_name="test1")
recons = pd.read_excel(path, sheet_name="test1", index_col=0)
tm.assert_frame_equal(frame, recons)
frame.to_excel(path, sheet_name="test1", index=False)
recons = pd.read_excel(path, sheet_name="test1", index_col=None)
recons.index = frame.index
tm.assert_frame_equal(frame, recons)
frame.to_excel(path, sheet_name="test1", na_rep="NA")
recons = pd.read_excel(path, sheet_name="test1", index_col=0, na_values=["NA"])
tm.assert_frame_equal(frame, recons)
# GH 3611
frame.to_excel(path, sheet_name="test1", na_rep="88")
recons = pd.read_excel(path, sheet_name="test1", index_col=0, na_values=["88"])
tm.assert_frame_equal(frame, recons)
frame.to_excel(path, sheet_name="test1", na_rep="88")
recons = pd.read_excel(
path, sheet_name="test1", index_col=0, na_values=[88, 88.0]
)
tm.assert_frame_equal(frame, recons)
# GH 6573
frame.to_excel(path, sheet_name="Sheet1")
recons = pd.read_excel(path, index_col=0)
tm.assert_frame_equal(frame, recons)
frame.to_excel(path, sheet_name="0")
recons = pd.read_excel(path, index_col=0)
tm.assert_frame_equal(frame, recons)
# GH 8825 Pandas Series should provide to_excel method
s = frame["A"]
s.to_excel(path)
recons = pd.read_excel(path, index_col=0)
tm.assert_frame_equal(s.to_frame(), recons)
def test_mixed(self, frame, path):
mixed_frame = frame.copy()
mixed_frame["foo"] = "bar"
mixed_frame.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(mixed_frame, recons)
def test_ts_frame(self, path):
unit = get_exp_unit(path)
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=5, freq="B"),
)
# freq doesn't round-trip
index = pd.DatetimeIndex(np.asarray(df.index), freq=None)
df.index = index
expected = df[:]
expected.index = expected.index.as_unit(unit)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(expected, recons)
def test_basics_with_nan(self, frame, path):
frame = frame.copy()
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
frame.to_excel(path, sheet_name="test1")
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", index=False)
@pytest.mark.parametrize("np_type", [np.int8, np.int16, np.int32, np.int64])
def test_int_types(self, np_type, path):
# Test np.int values read come back as int
# (rather than float which is Excel's format).
df = DataFrame(
np.random.default_rng(2).integers(-10, 10, size=(10, 2)), dtype=np_type
)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
int_frame = df.astype(np.int64)
tm.assert_frame_equal(int_frame, recons)
recons2 = pd.read_excel(path, sheet_name="test1", index_col=0)
tm.assert_frame_equal(int_frame, recons2)
@pytest.mark.parametrize("np_type", [np.float16, np.float32, np.float64])
def test_float_types(self, np_type, path):
# Test np.float values read come back as float.
df = DataFrame(np.random.default_rng(2).random(10), dtype=np_type)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
np_type
)
tm.assert_frame_equal(df, recons)
def test_bool_types(self, path):
# Test np.bool_ values read come back as float.
df = DataFrame([1, 0, True, False], dtype=np.bool_)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
np.bool_
)
tm.assert_frame_equal(df, recons)
def test_inf_roundtrip(self, path):
df = DataFrame([(1, np.inf), (2, 3), (5, -np.inf)])
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(df, recons)
def test_sheets(self, frame, path):
# freq doesn't round-trip
unit = get_exp_unit(path)
tsframe = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=5, freq="B"),
)
index = pd.DatetimeIndex(np.asarray(tsframe.index), freq=None)
tsframe.index = index
expected = tsframe[:]
expected.index = expected.index.as_unit(unit)
frame = frame.copy()
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
frame.to_excel(path, sheet_name="test1")
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", index=False)
# Test writing to separate sheets
with ExcelWriter(path) as writer:
frame.to_excel(writer, sheet_name="test1")
tsframe.to_excel(writer, sheet_name="test2")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(frame, recons)
recons = pd.read_excel(reader, sheet_name="test2", index_col=0)
tm.assert_frame_equal(expected, recons)
assert 2 == len(reader.sheet_names)
assert "test1" == reader.sheet_names[0]
assert "test2" == reader.sheet_names[1]
def test_colaliases(self, frame, path):
frame = frame.copy()
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
frame.to_excel(path, sheet_name="test1")
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", index=False)
# column aliases
col_aliases = Index(["AA", "X", "Y", "Z"])
frame.to_excel(path, sheet_name="test1", header=col_aliases)
with ExcelFile(path) as reader:
rs = pd.read_excel(reader, sheet_name="test1", index_col=0)
xp = frame.copy()
xp.columns = col_aliases
tm.assert_frame_equal(xp, rs)
def test_roundtrip_indexlabels(self, merge_cells, frame, path):
frame = frame.copy()
frame.iloc[:5, frame.columns.get_loc("A")] = np.nan
frame.to_excel(path, sheet_name="test1")
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", index=False)
# test index_label
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
df.to_excel(
path, sheet_name="test1", index_label=["test"], merge_cells=merge_cells
)
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
np.int64
)
df.index.names = ["test"]
assert df.index.names == recons.index.names
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
df.to_excel(
path,
sheet_name="test1",
index_label=["test", "dummy", "dummy2"],
merge_cells=merge_cells,
)
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
np.int64
)
df.index.names = ["test"]
assert df.index.names == recons.index.names
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2))) >= 0
df.to_excel(
path, sheet_name="test1", index_label="test", merge_cells=merge_cells
)
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
np.int64
)
df.index.names = ["test"]
tm.assert_frame_equal(df, recons.astype(bool))
frame.to_excel(
path,
sheet_name="test1",
columns=["A", "B", "C", "D"],
index=False,
merge_cells=merge_cells,
)
# take 'A' and 'B' as indexes (same row as cols 'C', 'D')
df = frame.copy()
df = df.set_index(["A", "B"])
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
tm.assert_frame_equal(df, recons)
def test_excel_roundtrip_indexname(self, merge_cells, path):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))
df.index.name = "foo"
df.to_excel(path, merge_cells=merge_cells)
with ExcelFile(path) as xf:
result = pd.read_excel(xf, sheet_name=xf.sheet_names[0], index_col=0)
tm.assert_frame_equal(result, df)
assert result.index.name == "foo"
def test_excel_roundtrip_datetime(self, merge_cells, path):
# datetime.date, not sure what to test here exactly
unit = get_exp_unit(path)
# freq does not round-trip
tsframe = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=5, freq="B"),
)
index = pd.DatetimeIndex(np.asarray(tsframe.index), freq=None)
tsframe.index = index
tsf = tsframe.copy()
tsf.index = [x.date() for x in tsframe.index]
tsf.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
expected = tsframe[:]
expected.index = expected.index.as_unit(unit)
tm.assert_frame_equal(expected, recons)
def test_excel_date_datetime_format(self, ext, path):
# see gh-4133
#
# Excel output format strings
unit = get_exp_unit(path)
df = DataFrame(
[
[date(2014, 1, 31), date(1999, 9, 24)],
[datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
],
index=["DATE", "DATETIME"],
columns=["X", "Y"],
)
df_expected = DataFrame(
[
[datetime(2014, 1, 31), datetime(1999, 9, 24)],
[datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
],
index=["DATE", "DATETIME"],
columns=["X", "Y"],
)
df_expected = df_expected.astype(f"M8[{unit}]")
with tm.ensure_clean(ext) as filename2:
with ExcelWriter(path) as writer1:
df.to_excel(writer1, sheet_name="test1")
with ExcelWriter(
filename2,
date_format="DD.MM.YYYY",
datetime_format="DD.MM.YYYY HH-MM-SS",
) as writer2:
df.to_excel(writer2, sheet_name="test1")
with ExcelFile(path) as reader1:
rs1 = pd.read_excel(reader1, sheet_name="test1", index_col=0)
with ExcelFile(filename2) as reader2:
rs2 = pd.read_excel(reader2, sheet_name="test1", index_col=0)
tm.assert_frame_equal(rs1, rs2)
# Since the reader returns a datetime object for dates,
# we need to use df_expected to check the result.
tm.assert_frame_equal(rs2, df_expected)
def test_to_excel_interval_no_labels(self, path, using_infer_string):
# see gh-19242
#
# Test writing Interval without labels.
df = DataFrame(
np.random.default_rng(2).integers(-10, 10, size=(20, 1)), dtype=np.int64
)
expected = df.copy()
df["new"] = pd.cut(df[0], 10)
expected["new"] = pd.cut(expected[0], 10).astype(
str if not using_infer_string else "string[pyarrow_numpy]"
)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(expected, recons)
def test_to_excel_interval_labels(self, path):
# see gh-19242
#
# Test writing Interval with labels.
df = DataFrame(
np.random.default_rng(2).integers(-10, 10, size=(20, 1)), dtype=np.int64
)
expected = df.copy()
intervals = pd.cut(
df[0], 10, labels=["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]
)
df["new"] = intervals
expected["new"] = pd.Series(list(intervals))
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(expected, recons)
def test_to_excel_timedelta(self, path):
# see gh-19242, gh-9155
#
# Test writing timedelta to xls.
df = DataFrame(
np.random.default_rng(2).integers(-10, 10, size=(20, 1)),
columns=["A"],
dtype=np.int64,
)
expected = df.copy()
df["new"] = df["A"].apply(lambda x: timedelta(seconds=x))
expected["new"] = expected["A"].apply(
lambda x: timedelta(seconds=x).total_seconds() / 86400
)
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0)
tm.assert_frame_equal(expected, recons)
def test_to_excel_periodindex(self, path):
# xp has a PeriodIndex
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=5, freq="B"),
)
xp = df.resample("ME").mean().to_period("M")
xp.to_excel(path, sheet_name="sht1")
with ExcelFile(path) as reader:
rs = pd.read_excel(reader, sheet_name="sht1", index_col=0)
tm.assert_frame_equal(xp, rs.to_period("M"))
def test_to_excel_multiindex(self, merge_cells, frame, path):
arrays = np.arange(len(frame.index) * 2, dtype=np.int64).reshape(2, -1)
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
frame.index = new_index
frame.to_excel(path, sheet_name="test1", header=False)
frame.to_excel(path, sheet_name="test1", columns=["A", "B"])
# round trip
frame.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
with ExcelFile(path) as reader:
df = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
tm.assert_frame_equal(frame, df)
# GH13511
def test_to_excel_multiindex_nan_label(self, merge_cells, path):
df = DataFrame(
{
"A": [None, 2, 3],
"B": [10, 20, 30],
"C": np.random.default_rng(2).random(3),
}
)
df = df.set_index(["A", "B"])
df.to_excel(path, merge_cells=merge_cells)
df1 = pd.read_excel(path, index_col=[0, 1])
tm.assert_frame_equal(df, df1)
# Test for Issue 11328. If column indices are integers, make
# sure they are handled correctly for either setting of
# merge_cells
def test_to_excel_multiindex_cols(self, merge_cells, frame, path):
arrays = np.arange(len(frame.index) * 2, dtype=np.int64).reshape(2, -1)
new_index = MultiIndex.from_arrays(arrays, names=["first", "second"])
frame.index = new_index
new_cols_index = MultiIndex.from_tuples([(40, 1), (40, 2), (50, 1), (50, 2)])
frame.columns = new_cols_index
header = [0, 1]
if not merge_cells:
header = 0
# round trip
frame.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
with ExcelFile(path) as reader:
df = pd.read_excel(
reader, sheet_name="test1", header=header, index_col=[0, 1]
)
if not merge_cells:
fm = frame.columns._format_multi(sparsify=False, include_names=False)
frame.columns = [".".join(map(str, q)) for q in zip(*fm)]
tm.assert_frame_equal(frame, df)
def test_to_excel_multiindex_dates(self, merge_cells, path):
# try multiindex with dates
unit = get_exp_unit(path)
tsframe = DataFrame(
np.random.default_rng(2).standard_normal((5, 4)),
columns=Index(list("ABCD")),
index=date_range("2000-01-01", periods=5, freq="B"),
)
tsframe.index = MultiIndex.from_arrays(
[
tsframe.index.as_unit(unit),
np.arange(len(tsframe.index), dtype=np.int64),
],
names=["time", "foo"],
)
tsframe.to_excel(path, sheet_name="test1", merge_cells=merge_cells)
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=[0, 1])
tm.assert_frame_equal(tsframe, recons)
assert recons.index.names == ("time", "foo")
def test_to_excel_multiindex_no_write_index(self, path):
# Test writing and re-reading a MI without the index. GH 5616.
# Initial non-MI frame.
frame1 = DataFrame({"a": [10, 20], "b": [30, 40], "c": [50, 60]})
# Add a MI.
frame2 = frame1.copy()
multi_index = MultiIndex.from_tuples([(70, 80), (90, 100)])
frame2.index = multi_index
# Write out to Excel without the index.
frame2.to_excel(path, sheet_name="test1", index=False)
# Read it back in.
with ExcelFile(path) as reader:
frame3 = pd.read_excel(reader, sheet_name="test1")
# Test that it is the same as the initial frame.
tm.assert_frame_equal(frame1, frame3)
def test_to_excel_empty_multiindex(self, path):
# GH 19543.
expected = DataFrame([], columns=[0, 1, 2])
df = DataFrame([], index=MultiIndex.from_tuples([], names=[0, 1]), columns=[2])
df.to_excel(path, sheet_name="test1")
with ExcelFile(path) as reader:
result = pd.read_excel(reader, sheet_name="test1")
tm.assert_frame_equal(
result, expected, check_index_type=False, check_dtype=False
)
def test_to_excel_float_format(self, path):
df = DataFrame(
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
df.to_excel(path, sheet_name="test1", float_format="%.2f")
with ExcelFile(path) as reader:
result = pd.read_excel(reader, sheet_name="test1", index_col=0)
expected = DataFrame(
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
tm.assert_frame_equal(result, expected)
def test_to_excel_output_encoding(self, ext):
# Avoid mixed inferred_type.
df = DataFrame(
[["\u0192", "\u0193", "\u0194"], ["\u0195", "\u0196", "\u0197"]],
index=["A\u0192", "B"],
columns=["X\u0193", "Y", "Z"],
)
with tm.ensure_clean("__tmp_to_excel_float_format__." + ext) as filename:
df.to_excel(filename, sheet_name="TestSheet")
result = pd.read_excel(filename, sheet_name="TestSheet", index_col=0)
tm.assert_frame_equal(result, df)
def test_to_excel_unicode_filename(self, ext):
with tm.ensure_clean("\u0192u." + ext) as filename:
try:
with open(filename, "wb"):
pass
except UnicodeEncodeError:
pytest.skip("No unicode file names on this system")
df = DataFrame(
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
df.to_excel(filename, sheet_name="test1", float_format="%.2f")
with ExcelFile(filename) as reader:
result = pd.read_excel(reader, sheet_name="test1", index_col=0)
expected = DataFrame(
[[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("use_headers", [True, False])
@pytest.mark.parametrize("r_idx_nlevels", [1, 2, 3])
@pytest.mark.parametrize("c_idx_nlevels", [1, 2, 3])
def test_excel_010_hemstring(
self, merge_cells, c_idx_nlevels, r_idx_nlevels, use_headers, path
):
def roundtrip(data, header=True, parser_hdr=0, index=True):
data.to_excel(path, header=header, merge_cells=merge_cells, index=index)
with ExcelFile(path) as xf:
return pd.read_excel(
xf, sheet_name=xf.sheet_names[0], header=parser_hdr
)
# Basic test.
parser_header = 0 if use_headers else None
res = roundtrip(DataFrame([0]), use_headers, parser_header)
assert res.shape == (1, 2)
assert res.iloc[0, 0] is not np.nan
# More complex tests with multi-index.
nrows = 5
ncols = 3
# ensure limited functionality in 0.10
# override of gh-2370 until sorted out in 0.11
if c_idx_nlevels == 1:
columns = Index([f"a-{i}" for i in range(ncols)], dtype=object)
else:
columns = MultiIndex.from_arrays(
[range(ncols) for _ in range(c_idx_nlevels)],
names=[f"i-{i}" for i in range(c_idx_nlevels)],
)
if r_idx_nlevels == 1:
index = Index([f"b-{i}" for i in range(nrows)], dtype=object)
else:
index = MultiIndex.from_arrays(
[range(nrows) for _ in range(r_idx_nlevels)],
names=[f"j-{i}" for i in range(r_idx_nlevels)],
)
df = DataFrame(
np.ones((nrows, ncols)),
columns=columns,
index=index,
)
# This if will be removed once multi-column Excel writing
# is implemented. For now fixing gh-9794.
if c_idx_nlevels > 1:
msg = (
"Writing to Excel with MultiIndex columns and no index "
"\\('index'=False\\) is not yet implemented."
)
with pytest.raises(NotImplementedError, match=msg):
roundtrip(df, use_headers, index=False)
else:
res = roundtrip(df, use_headers)
if use_headers:
assert res.shape == (nrows, ncols + r_idx_nlevels)
else:
# First row taken as columns.
assert res.shape == (nrows - 1, ncols + r_idx_nlevels)
# No NaNs.
for r in range(len(res.index)):
for c in range(len(res.columns)):
assert res.iloc[r, c] is not np.nan
def test_duplicated_columns(self, path):
# see gh-5235
df = DataFrame([[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B"])
df.to_excel(path, sheet_name="test1")
expected = DataFrame(
[[1, 2, 3], [1, 2, 3], [1, 2, 3]], columns=["A", "B", "B.1"]
)
# By default, we mangle.
result = pd.read_excel(path, sheet_name="test1", index_col=0)
tm.assert_frame_equal(result, expected)
# see gh-11007, gh-10970
df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A", "B"])
df.to_excel(path, sheet_name="test1")
result = pd.read_excel(path, sheet_name="test1", index_col=0)
expected = DataFrame(
[[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "A.1", "B.1"]
)
tm.assert_frame_equal(result, expected)
# see gh-10982
df.to_excel(path, sheet_name="test1", index=False, header=False)
result = pd.read_excel(path, sheet_name="test1", header=None)
expected = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]])
tm.assert_frame_equal(result, expected)
def test_swapped_columns(self, path):
# Test for issue #5427.
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]})
write_frame.to_excel(path, sheet_name="test1", columns=["B", "A"])
read_frame = pd.read_excel(path, sheet_name="test1", header=0)
tm.assert_series_equal(write_frame["A"], read_frame["A"])
tm.assert_series_equal(write_frame["B"], read_frame["B"])
def test_invalid_columns(self, path):
# see gh-10982
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2]})
with pytest.raises(KeyError, match="Not all names specified"):
write_frame.to_excel(path, sheet_name="test1", columns=["B", "C"])
with pytest.raises(
KeyError, match="'passes columns are not ALL present dataframe'"
):
write_frame.to_excel(path, sheet_name="test1", columns=["C", "D"])
@pytest.mark.parametrize(
"to_excel_index,read_excel_index_col",
[
(True, 0), # Include index in write to file
(False, None), # Dont include index in write to file
],
)
def test_write_subset_columns(self, path, to_excel_index, read_excel_index_col):
# GH 31677
write_frame = DataFrame({"A": [1, 1, 1], "B": [2, 2, 2], "C": [3, 3, 3]})
write_frame.to_excel(
path, sheet_name="col_subset_bug", columns=["A", "B"], index=to_excel_index
)
expected = write_frame[["A", "B"]]
read_frame = pd.read_excel(
path, sheet_name="col_subset_bug", index_col=read_excel_index_col
)
tm.assert_frame_equal(expected, read_frame)
def test_comment_arg(self, path):
# see gh-18735
#
# Test the comment argument functionality to pd.read_excel.
# Create file to read in.
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
df.to_excel(path, sheet_name="test_c")
# Read file without comment arg.
result1 = pd.read_excel(path, sheet_name="test_c", index_col=0)
result1.iloc[1, 0] = None
result1.iloc[1, 1] = None
result1.iloc[2, 1] = None
result2 = pd.read_excel(path, sheet_name="test_c", comment="#", index_col=0)
tm.assert_frame_equal(result1, result2)
def test_comment_default(self, path):
# Re issue #18735
# Test the comment argument default to pd.read_excel
# Create file to read in
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
df.to_excel(path, sheet_name="test_c")
# Read file with default and explicit comment=None
result1 = pd.read_excel(path, sheet_name="test_c")
result2 = pd.read_excel(path, sheet_name="test_c", comment=None)
tm.assert_frame_equal(result1, result2)
def test_comment_used(self, path):
# see gh-18735
#
# Test the comment argument is working as expected when used.
# Create file to read in.
df = DataFrame({"A": ["one", "#one", "one"], "B": ["two", "two", "#two"]})
df.to_excel(path, sheet_name="test_c")
# Test read_frame_comment against manually produced expected output.
expected = DataFrame({"A": ["one", None, "one"], "B": ["two", None, None]})
result = pd.read_excel(path, sheet_name="test_c", comment="#", index_col=0)
tm.assert_frame_equal(result, expected)
def test_comment_empty_line(self, path):
# Re issue #18735
# Test that pd.read_excel ignores commented lines at the end of file
df = DataFrame({"a": ["1", "#2"], "b": ["2", "3"]})
df.to_excel(path, index=False)
# Test that all-comment lines at EoF are ignored
expected = DataFrame({"a": [1], "b": [2]})
result = pd.read_excel(path, comment="#")
tm.assert_frame_equal(result, expected)
def test_datetimes(self, path):
# Test writing and reading datetimes. For issue #9139. (xref #9185)
unit = get_exp_unit(path)
datetimes = [
datetime(2013, 1, 13, 1, 2, 3),
datetime(2013, 1, 13, 2, 45, 56),
datetime(2013, 1, 13, 4, 29, 49),
datetime(2013, 1, 13, 6, 13, 42),
datetime(2013, 1, 13, 7, 57, 35),
datetime(2013, 1, 13, 9, 41, 28),
datetime(2013, 1, 13, 11, 25, 21),
datetime(2013, 1, 13, 13, 9, 14),
datetime(2013, 1, 13, 14, 53, 7),
datetime(2013, 1, 13, 16, 37, 0),
datetime(2013, 1, 13, 18, 20, 52),
]
write_frame = DataFrame({"A": datetimes})
write_frame.to_excel(path, sheet_name="Sheet1")
read_frame = pd.read_excel(path, sheet_name="Sheet1", header=0)
expected = write_frame.astype(f"M8[{unit}]")
tm.assert_series_equal(expected["A"], read_frame["A"])
def test_bytes_io(self, engine):
# see gh-7074
with BytesIO() as bio:
df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
# Pass engine explicitly, as there is no file path to infer from.
with ExcelWriter(bio, engine=engine) as writer:
df.to_excel(writer)
bio.seek(0)
reread_df = pd.read_excel(bio, index_col=0)
tm.assert_frame_equal(df, reread_df)
def test_engine_kwargs(self, engine, path):
# GH#52368
df = DataFrame([{"A": 1, "B": 2}, {"A": 3, "B": 4}])
msgs = {
"odf": r"OpenDocumentSpreadsheet() got an unexpected keyword "
r"argument 'foo'",
"openpyxl": r"__init__() got an unexpected keyword argument 'foo'",
"xlsxwriter": r"__init__() got an unexpected keyword argument 'foo'",
}
if PY310:
msgs[
"openpyxl"
] = "Workbook.__init__() got an unexpected keyword argument 'foo'"
msgs[
"xlsxwriter"
] = "Workbook.__init__() got an unexpected keyword argument 'foo'"
# Handle change in error message for openpyxl (write and append mode)
if engine == "openpyxl" and not os.path.exists(path):
msgs[
"openpyxl"
] = r"load_workbook() got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=re.escape(msgs[engine])):
df.to_excel(
path,
engine=engine,
engine_kwargs={"foo": "bar"},
)
def test_write_lists_dict(self, path):
# see gh-8188.
df = DataFrame(
{
"mixed": ["a", ["b", "c"], {"d": "e", "f": 2}],
"numeric": [1, 2, 3.0],
"str": ["apple", "banana", "cherry"],
}
)
df.to_excel(path, sheet_name="Sheet1")
read = pd.read_excel(path, sheet_name="Sheet1", header=0, index_col=0)
expected = df.copy()
expected.mixed = expected.mixed.apply(str)
expected.numeric = expected.numeric.astype("int64")
tm.assert_frame_equal(read, expected)
def test_render_as_column_name(self, path):
# see gh-34331
df = DataFrame({"render": [1, 2], "data": [3, 4]})
df.to_excel(path, sheet_name="Sheet1")
read = pd.read_excel(path, "Sheet1", index_col=0)
expected = df
tm.assert_frame_equal(read, expected)
def test_true_and_false_value_options(self, path):
# see gh-13347
df = DataFrame([["foo", "bar"]], columns=["col1", "col2"], dtype=object)
with option_context("future.no_silent_downcasting", True):
expected = df.replace({"foo": True, "bar": False}).astype("bool")
df.to_excel(path)
read_frame = pd.read_excel(
path, true_values=["foo"], false_values=["bar"], index_col=0
)
tm.assert_frame_equal(read_frame, expected)
def test_freeze_panes(self, path):
# see gh-15160
expected = DataFrame([[1, 2], [3, 4]], columns=["col1", "col2"])
expected.to_excel(path, sheet_name="Sheet1", freeze_panes=(1, 1))
result = pd.read_excel(path, index_col=0)
tm.assert_frame_equal(result, expected)
def test_path_path_lib(self, engine, ext):
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
writer = partial(df.to_excel, engine=engine)
reader = partial(pd.read_excel, index_col=0)
result = tm.round_trip_pathlib(writer, reader, path=f"foo{ext}")
tm.assert_frame_equal(result, df)
def test_path_local_path(self, engine, ext):
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD")),
index=Index([f"i-{i}" for i in range(30)]),
)
writer = partial(df.to_excel, engine=engine)
reader = partial(pd.read_excel, index_col=0)
result = tm.round_trip_localpath(writer, reader, path=f"foo{ext}")
tm.assert_frame_equal(result, df)
def test_merged_cell_custom_objects(self, path):
# see GH-27006
mi = MultiIndex.from_tuples(
[
(pd.Period("2018"), pd.Period("2018Q1")),
(pd.Period("2018"), pd.Period("2018Q2")),
]
)
expected = DataFrame(np.ones((2, 2), dtype="int64"), columns=mi)
expected.to_excel(path)
result = pd.read_excel(path, header=[0, 1], index_col=0)
# need to convert PeriodIndexes to standard Indexes for assert equal
expected.columns = expected.columns.set_levels(
[[str(i) for i in mi.levels[0]], [str(i) for i in mi.levels[1]]],
level=[0, 1],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", [None, object])
def test_raise_when_saving_timezones(self, dtype, tz_aware_fixture, path):
# GH 27008, GH 7056
tz = tz_aware_fixture
data = pd.Timestamp("2019", tz=tz)
df = DataFrame([data], dtype=dtype)
with pytest.raises(ValueError, match="Excel does not support"):
df.to_excel(path)
data = data.to_pydatetime()
df = DataFrame([data], dtype=dtype)
with pytest.raises(ValueError, match="Excel does not support"):
df.to_excel(path)
def test_excel_duplicate_columns_with_names(self, path):
# GH#39695
df = DataFrame({"A": [0, 1], "B": [10, 11]})
df.to_excel(path, columns=["A", "B", "A"], index=False)
result = pd.read_excel(path)
expected = DataFrame([[0, 10, 0], [1, 11, 1]], columns=["A", "B", "A.1"])
tm.assert_frame_equal(result, expected)
def test_if_sheet_exists_raises(self, ext):
# GH 40230
msg = "if_sheet_exists is only valid in append mode (mode='a')"
with tm.ensure_clean(ext) as f:
with pytest.raises(ValueError, match=re.escape(msg)):
ExcelWriter(f, if_sheet_exists="replace")
def test_excel_writer_empty_frame(self, engine, ext):
# GH#45793
with tm.ensure_clean(ext) as path:
with ExcelWriter(path, engine=engine) as writer:
DataFrame().to_excel(writer)
result = pd.read_excel(path)
expected = DataFrame()
tm.assert_frame_equal(result, expected)
def test_to_excel_empty_frame(self, engine, ext):
# GH#45793
with tm.ensure_clean(ext) as path:
DataFrame().to_excel(path, engine=engine)
result = pd.read_excel(path)
expected = DataFrame()
tm.assert_frame_equal(result, expected)
class TestExcelWriterEngineTests:
@pytest.mark.parametrize(
"klass,ext",
[
pytest.param(_XlsxWriter, ".xlsx", marks=td.skip_if_no("xlsxwriter")),
pytest.param(_OpenpyxlWriter, ".xlsx", marks=td.skip_if_no("openpyxl")),
],
)
def test_ExcelWriter_dispatch(self, klass, ext):
with tm.ensure_clean(ext) as path:
with ExcelWriter(path) as writer:
if ext == ".xlsx" and bool(
import_optional_dependency("xlsxwriter", errors="ignore")
):
# xlsxwriter has preference over openpyxl if both installed
assert isinstance(writer, _XlsxWriter)
else:
assert isinstance(writer, klass)
def test_ExcelWriter_dispatch_raises(self):
with pytest.raises(ValueError, match="No engine"):
ExcelWriter("nothing")
def test_register_writer(self):
class DummyClass(ExcelWriter):
called_save = False
called_write_cells = False
called_sheets = False
_supported_extensions = ("xlsx", "xls")
_engine = "dummy"
def book(self):
pass
def _save(self):
type(self).called_save = True
def _write_cells(self, *args, **kwargs):
type(self).called_write_cells = True
@property
def sheets(self):
type(self).called_sheets = True
@classmethod
def assert_called_and_reset(cls):
assert cls.called_save
assert cls.called_write_cells
assert not cls.called_sheets
cls.called_save = False
cls.called_write_cells = False
register_writer(DummyClass)
with option_context("io.excel.xlsx.writer", "dummy"):
path = "something.xlsx"
with tm.ensure_clean(path) as filepath:
with ExcelWriter(filepath) as writer:
assert isinstance(writer, DummyClass)
df = DataFrame(
["a"],
columns=Index(["b"], name="foo"),
index=Index(["c"], name="bar"),
)
df.to_excel(filepath)
DummyClass.assert_called_and_reset()
with tm.ensure_clean("something.xls") as filepath:
df.to_excel(filepath, engine="dummy")
DummyClass.assert_called_and_reset()
@td.skip_if_no("xlrd")
@td.skip_if_no("openpyxl")
class TestFSPath:
def test_excelfile_fspath(self):
with tm.ensure_clean("foo.xlsx") as path:
df = DataFrame({"A": [1, 2]})
df.to_excel(path)
with ExcelFile(path) as xl:
result = os.fspath(xl)
assert result == path
def test_excelwriter_fspath(self):
with tm.ensure_clean("foo.xlsx") as path:
with ExcelWriter(path) as writer:
assert os.fspath(writer) == str(path)
def test_to_excel_pos_args_deprecation(self):
# GH-54229
df = DataFrame({"a": [1, 2, 3]})
msg = (
r"Starting with pandas version 3.0 all arguments of to_excel except "
r"for the argument 'excel_writer' will be keyword-only."
)
with tm.assert_produces_warning(FutureWarning, match=msg):
buf = BytesIO()
writer = ExcelWriter(buf)
df.to_excel(writer, "Sheet_name_1")
@pytest.mark.parametrize("klass", _writers.values())
def test_subclass_attr(klass):
# testing that subclasses of ExcelWriter don't have public attributes (issue 49602)
attrs_base = {name for name in dir(ExcelWriter) if not name.startswith("_")}
attrs_klass = {name for name in dir(klass) if not name.startswith("_")}
assert not attrs_base.symmetric_difference(attrs_klass)