You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

131 lines
4.4 KiB

from io import (
BytesIO,
StringIO,
)
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
def test_compression_roundtrip(compression):
df = pd.DataFrame(
[[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]],
index=["A", "B"],
columns=["X", "Y", "Z"],
)
with tm.ensure_clean() as path:
df.to_json(path, compression=compression)
tm.assert_frame_equal(df, pd.read_json(path, compression=compression))
# explicitly ensure file was compressed.
with tm.decompress_file(path, compression) as fh:
result = fh.read().decode("utf8")
data = StringIO(result)
tm.assert_frame_equal(df, pd.read_json(data))
def test_read_zipped_json(datapath):
uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json")
uncompressed_df = pd.read_json(uncompressed_path)
compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip")
compressed_df = pd.read_json(compressed_path, compression="zip")
tm.assert_frame_equal(uncompressed_df, compressed_df)
@td.skip_if_not_us_locale
@pytest.mark.single_cpu
def test_with_s3_url(compression, s3_public_bucket, s3so):
# Bucket created in tests/io/conftest.py
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
with tm.ensure_clean() as path:
df.to_json(path, compression=compression)
with open(path, "rb") as f:
s3_public_bucket.put_object(Key="test-1", Body=f)
roundtripped_df = pd.read_json(
f"s3://{s3_public_bucket.name}/test-1",
compression=compression,
storage_options=s3so,
)
tm.assert_frame_equal(df, roundtripped_df)
def test_lines_with_compression(compression):
with tm.ensure_clean() as path:
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
df.to_json(path, orient="records", lines=True, compression=compression)
roundtripped_df = pd.read_json(path, lines=True, compression=compression)
tm.assert_frame_equal(df, roundtripped_df)
def test_chunksize_with_compression(compression):
with tm.ensure_clean() as path:
df = pd.read_json(StringIO('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}'))
df.to_json(path, orient="records", lines=True, compression=compression)
with pd.read_json(
path, lines=True, chunksize=1, compression=compression
) as res:
roundtripped_df = pd.concat(res)
tm.assert_frame_equal(df, roundtripped_df)
def test_write_unsupported_compression_type():
df = pd.read_json(StringIO('{"a": [1, 2, 3], "b": [4, 5, 6]}'))
with tm.ensure_clean() as path:
msg = "Unrecognized compression type: unsupported"
with pytest.raises(ValueError, match=msg):
df.to_json(path, compression="unsupported")
def test_read_unsupported_compression_type():
with tm.ensure_clean() as path:
msg = "Unrecognized compression type: unsupported"
with pytest.raises(ValueError, match=msg):
pd.read_json(path, compression="unsupported")
@pytest.mark.parametrize(
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
)
@pytest.mark.parametrize("to_infer", [True, False])
@pytest.mark.parametrize("read_infer", [True, False])
def test_to_json_compression(
compression_only, read_infer, to_infer, compression_to_extension, infer_string
):
with pd.option_context("future.infer_string", infer_string):
# see gh-15008
compression = compression_only
# We'll complete file extension subsequently.
filename = "test."
filename += compression_to_extension[compression]
df = pd.DataFrame({"A": [1]})
to_compression = "infer" if to_infer else compression
read_compression = "infer" if read_infer else compression
with tm.ensure_clean(filename) as path:
df.to_json(path, compression=to_compression)
result = pd.read_json(path, compression=read_compression)
tm.assert_frame_equal(result, df)
def test_to_json_compression_mode(compression):
# GH 39985 (read_json does not support user-provided binary files)
expected = pd.DataFrame({"A": [1]})
with BytesIO() as buffer:
expected.to_json(buffer, compression=compression)
# df = pd.read_json(buffer, compression=compression)
# tm.assert_frame_equal(expected, df)