You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
5.8 KiB
196 lines
5.8 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
Series,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.tests.io.pytables.common import ensure_clean_store
|
|
|
|
from pandas.io.pytables import read_hdf
|
|
|
|
|
|
def test_complex_fixed(tmp_path, setup_path):
|
|
df = DataFrame(
|
|
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
|
|
index=list("abcd"),
|
|
columns=list("ABCDE"),
|
|
)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df")
|
|
reread = read_hdf(path, "df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
df = DataFrame(
|
|
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
|
|
index=list("abcd"),
|
|
columns=list("ABCDE"),
|
|
)
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df")
|
|
reread = read_hdf(path, "df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
|
|
def test_complex_table(tmp_path, setup_path):
|
|
df = DataFrame(
|
|
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
|
|
index=list("abcd"),
|
|
columns=list("ABCDE"),
|
|
)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df", format="table")
|
|
reread = read_hdf(path, key="df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
df = DataFrame(
|
|
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
|
|
index=list("abcd"),
|
|
columns=list("ABCDE"),
|
|
)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df", format="table", mode="w")
|
|
reread = read_hdf(path, "df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
|
|
def test_complex_mixed_fixed(tmp_path, setup_path):
|
|
complex64 = np.array(
|
|
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
|
|
)
|
|
complex128 = np.array(
|
|
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
|
|
)
|
|
df = DataFrame(
|
|
{
|
|
"A": [1, 2, 3, 4],
|
|
"B": ["a", "b", "c", "d"],
|
|
"C": complex64,
|
|
"D": complex128,
|
|
"E": [1.0, 2.0, 3.0, 4.0],
|
|
},
|
|
index=list("abcd"),
|
|
)
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df")
|
|
reread = read_hdf(path, "df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
|
|
def test_complex_mixed_table(tmp_path, setup_path):
|
|
complex64 = np.array(
|
|
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
|
|
)
|
|
complex128 = np.array(
|
|
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
|
|
)
|
|
df = DataFrame(
|
|
{
|
|
"A": [1, 2, 3, 4],
|
|
"B": ["a", "b", "c", "d"],
|
|
"C": complex64,
|
|
"D": complex128,
|
|
"E": [1.0, 2.0, 3.0, 4.0],
|
|
},
|
|
index=list("abcd"),
|
|
)
|
|
|
|
with ensure_clean_store(setup_path) as store:
|
|
store.append("df", df, data_columns=["A", "B"])
|
|
result = store.select("df", where="A>2")
|
|
tm.assert_frame_equal(df.loc[df.A > 2], result)
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="df", format="table")
|
|
reread = read_hdf(path, "df")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
|
|
def test_complex_across_dimensions_fixed(tmp_path, setup_path):
|
|
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
|
|
s = Series(complex128, index=list("abcd"))
|
|
df = DataFrame({"A": s, "B": s})
|
|
|
|
objs = [s, df]
|
|
comps = [tm.assert_series_equal, tm.assert_frame_equal]
|
|
for obj, comp in zip(objs, comps):
|
|
path = tmp_path / setup_path
|
|
obj.to_hdf(path, key="obj", format="fixed")
|
|
reread = read_hdf(path, "obj")
|
|
comp(obj, reread)
|
|
|
|
|
|
def test_complex_across_dimensions(tmp_path, setup_path):
|
|
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
|
|
s = Series(complex128, index=list("abcd"))
|
|
df = DataFrame({"A": s, "B": s})
|
|
|
|
path = tmp_path / setup_path
|
|
df.to_hdf(path, key="obj", format="table")
|
|
reread = read_hdf(path, "obj")
|
|
tm.assert_frame_equal(df, reread)
|
|
|
|
|
|
def test_complex_indexing_error(setup_path):
|
|
complex128 = np.array(
|
|
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
|
|
)
|
|
df = DataFrame(
|
|
{"A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex128},
|
|
index=list("abcd"),
|
|
)
|
|
|
|
msg = (
|
|
"Columns containing complex values can be stored "
|
|
"but cannot be indexed when using table format. "
|
|
"Either use fixed format, set index=False, "
|
|
"or do not include the columns containing complex "
|
|
"values to data_columns when initializing the table."
|
|
)
|
|
|
|
with ensure_clean_store(setup_path) as store:
|
|
with pytest.raises(TypeError, match=msg):
|
|
store.append("df", df, data_columns=["C"])
|
|
|
|
|
|
def test_complex_series_error(tmp_path, setup_path):
|
|
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
|
|
s = Series(complex128, index=list("abcd"))
|
|
|
|
msg = (
|
|
"Columns containing complex values can be stored "
|
|
"but cannot be indexed when using table format. "
|
|
"Either use fixed format, set index=False, "
|
|
"or do not include the columns containing complex "
|
|
"values to data_columns when initializing the table."
|
|
)
|
|
|
|
path = tmp_path / setup_path
|
|
with pytest.raises(TypeError, match=msg):
|
|
s.to_hdf(path, key="obj", format="t")
|
|
|
|
path = tmp_path / setup_path
|
|
s.to_hdf(path, key="obj", format="t", index=False)
|
|
reread = read_hdf(path, "obj")
|
|
tm.assert_series_equal(s, reread)
|
|
|
|
|
|
def test_complex_append(setup_path):
|
|
df = DataFrame(
|
|
{
|
|
"a": np.random.default_rng(2).standard_normal(100).astype(np.complex128),
|
|
"b": np.random.default_rng(2).standard_normal(100),
|
|
}
|
|
)
|
|
|
|
with ensure_clean_store(setup_path) as store:
|
|
store.append("df", df, data_columns=["b"])
|
|
store.append("df", df)
|
|
result = store.select("df")
|
|
tm.assert_frame_equal(pd.concat([df, df], axis=0), result)
|