You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

413 lines
13 KiB

from contextlib import closing
from pathlib import Path
import re
import numpy as np
import pytest
from pandas._libs.tslibs import Timestamp
from pandas.compat import is_platform_windows
import pandas as pd
from pandas import (
DataFrame,
HDFStore,
Index,
Series,
_testing as tm,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import (
_maybe_remove,
ensure_clean_store,
)
from pandas.util import _test_decorators as td
from pandas.io.pytables import TableIterator
pytestmark = pytest.mark.single_cpu
def test_read_missing_key_close_store(tmp_path, setup_path):
# GH 25766
path = tmp_path / setup_path
df = DataFrame({"a": range(2), "b": range(2)})
df.to_hdf(path, key="k1")
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
read_hdf(path, "k2")
# smoke test to test that file is properly closed after
# read with KeyError before another write
df.to_hdf(path, key="k2")
def test_read_index_error_close_store(tmp_path, setup_path):
# GH 25766
path = tmp_path / setup_path
df = DataFrame({"A": [], "B": []}, index=[])
df.to_hdf(path, key="k1")
with pytest.raises(IndexError, match=r"list index out of range"):
read_hdf(path, "k1", stop=0)
# smoke test to test that file is properly closed after
# read with IndexError before another write
df.to_hdf(path, key="k1")
def test_read_missing_key_opened_store(tmp_path, setup_path):
# GH 28699
path = tmp_path / setup_path
df = DataFrame({"a": range(2), "b": range(2)})
df.to_hdf(path, key="k1")
with HDFStore(path, "r") as store:
with pytest.raises(KeyError, match="'No object named k2 in the file'"):
read_hdf(store, "k2")
# Test that the file is still open after a KeyError and that we can
# still read from it.
read_hdf(store, "k1")
def test_read_column(setup_path):
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
with ensure_clean_store(setup_path) as store:
_maybe_remove(store, "df")
# GH 17912
# HDFStore.select_column should raise a KeyError
# exception if the key is not a valid store
with pytest.raises(KeyError, match="No object named df in the file"):
store.select_column("df", "index")
store.append("df", df)
# error
with pytest.raises(
KeyError, match=re.escape("'column [foo] not found in the table'")
):
store.select_column("df", "foo")
msg = re.escape("select_column() got an unexpected keyword argument 'where'")
with pytest.raises(TypeError, match=msg):
store.select_column("df", "index", where=["index>5"])
# valid
result = store.select_column("df", "index")
tm.assert_almost_equal(result.values, Series(df.index).values)
assert isinstance(result, Series)
# not a data indexable column
msg = re.escape(
"column [values_block_0] can not be extracted individually; "
"it is not data indexable"
)
with pytest.raises(ValueError, match=msg):
store.select_column("df", "values_block_0")
# a data column
df2 = df.copy()
df2["string"] = "foo"
store.append("df2", df2, data_columns=["string"])
result = store.select_column("df2", "string")
tm.assert_almost_equal(result.values, df2["string"].values)
# a data column with NaNs, result excludes the NaNs
df3 = df.copy()
df3["string"] = "foo"
df3.loc[df3.index[4:6], "string"] = np.nan
store.append("df3", df3, data_columns=["string"])
result = store.select_column("df3", "string")
tm.assert_almost_equal(result.values, df3["string"].values)
# start/stop
result = store.select_column("df3", "string", start=2)
tm.assert_almost_equal(result.values, df3["string"].values[2:])
result = store.select_column("df3", "string", start=-2)
tm.assert_almost_equal(result.values, df3["string"].values[-2:])
result = store.select_column("df3", "string", stop=2)
tm.assert_almost_equal(result.values, df3["string"].values[:2])
result = store.select_column("df3", "string", stop=-2)
tm.assert_almost_equal(result.values, df3["string"].values[:-2])
result = store.select_column("df3", "string", start=2, stop=-2)
tm.assert_almost_equal(result.values, df3["string"].values[2:-2])
result = store.select_column("df3", "string", start=-2, stop=2)
tm.assert_almost_equal(result.values, df3["string"].values[-2:2])
# GH 10392 - make sure column name is preserved
df4 = DataFrame({"A": np.random.default_rng(2).standard_normal(10), "B": "foo"})
store.append("df4", df4, data_columns=True)
expected = df4["B"]
result = store.select_column("df4", "B")
tm.assert_series_equal(result, expected)
def test_pytables_native_read(datapath):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf/pytables_native.h5"), mode="r"
) as store:
d2 = store["detector/readout"]
assert isinstance(d2, DataFrame)
@pytest.mark.skipif(is_platform_windows(), reason="native2 read fails oddly on windows")
def test_pytables_native2_read(datapath):
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "pytables_native2.h5"), mode="r"
) as store:
str(store)
d1 = store["detector"]
assert isinstance(d1, DataFrame)
def test_legacy_table_fixed_format_read_py2(datapath):
# GH 24510
# legacy table with fixed format written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_py2.h5"), mode="r"
) as store:
result = store.select("df")
expected = DataFrame(
[[1, 2, 3, "D"]],
columns=["A", "B", "C", "D"],
index=Index(["ABC"], name="INDEX_NAME"),
)
tm.assert_frame_equal(expected, result)
def test_legacy_table_fixed_format_read_datetime_py2(datapath):
# GH 31750
# legacy table with fixed format and datetime64 column written in Python 2
expected = DataFrame(
[[Timestamp("2020-02-06T18:00")]],
columns=["A"],
index=Index(["date"]),
dtype="M8[ns]",
)
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_fixed_datetime_py2.h5"),
mode="r",
) as store:
result = store.select("df")
tm.assert_frame_equal(expected, result)
def test_legacy_table_read_py2(datapath):
# issue: 24925
# legacy table written in Python 2
with ensure_clean_store(
datapath("io", "data", "legacy_hdf", "legacy_table_py2.h5"), mode="r"
) as store:
result = store.select("table")
expected = DataFrame({"a": ["a", "b"], "b": [2, 3]})
tm.assert_frame_equal(expected, result)
def test_read_hdf_open_store(tmp_path, setup_path):
# GH10330
# No check for non-string path_or-buf, and no test of open store
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
df.index.name = "letters"
df = df.set_index(keys="E", append=True)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w")
direct = read_hdf(path, "df")
with HDFStore(path, mode="r") as store:
indirect = read_hdf(store, "df")
tm.assert_frame_equal(direct, indirect)
assert store.is_open
def test_read_hdf_index_not_view(tmp_path, setup_path):
# GH 37441
# Ensure that the index of the DataFrame is not a view
# into the original recarray that pytables reads in
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=[0, 1, 2, 3],
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w", format="table")
df2 = read_hdf(path, "df")
assert df2.index._data.base is None
tm.assert_frame_equal(df, df2)
def test_read_hdf_iterator(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
df.index.name = "letters"
df = df.set_index(keys="E", append=True)
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="w", format="t")
direct = read_hdf(path, "df")
iterator = read_hdf(path, "df", iterator=True)
with closing(iterator.store):
assert isinstance(iterator, TableIterator)
indirect = next(iterator.__iter__())
tm.assert_frame_equal(direct, indirect)
def test_read_nokey(tmp_path, setup_path):
# GH10443
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
# Categorical dtype not supported for "fixed" format. So no need
# to test with that dtype in the dataframe here.
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="a")
reread = read_hdf(path)
tm.assert_frame_equal(df, reread)
df.to_hdf(path, key="df2", mode="a")
msg = "key must be provided when HDF5 file contains multiple datasets."
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_nokey_table(tmp_path, setup_path):
# GH13231
df = DataFrame({"i": range(5), "c": Series(list("abacd"), dtype="category")})
path = tmp_path / setup_path
df.to_hdf(path, key="df", mode="a", format="table")
reread = read_hdf(path)
tm.assert_frame_equal(df, reread)
df.to_hdf(path, key="df2", mode="a", format="table")
msg = "key must be provided when HDF5 file contains multiple datasets."
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_nokey_empty(tmp_path, setup_path):
path = tmp_path / setup_path
store = HDFStore(path)
store.close()
msg = re.escape(
"Dataset(s) incompatible with Pandas data types, not table, or no "
"datasets found in HDF5 file."
)
with pytest.raises(ValueError, match=msg):
read_hdf(path)
def test_read_from_pathlib_path(tmp_path, setup_path):
# GH11773
expected = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
filename = tmp_path / setup_path
path_obj = Path(filename)
expected.to_hdf(path_obj, key="df", mode="a")
actual = read_hdf(path_obj, key="df")
tm.assert_frame_equal(expected, actual)
@td.skip_if_no("py.path")
def test_read_from_py_localpath(tmp_path, setup_path):
# GH11773
from py.path import local as LocalPath
expected = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
filename = tmp_path / setup_path
path_obj = LocalPath(filename)
expected.to_hdf(path_obj, key="df", mode="a")
actual = read_hdf(path_obj, key="df")
tm.assert_frame_equal(expected, actual)
@pytest.mark.parametrize("format", ["fixed", "table"])
def test_read_hdf_series_mode_r(tmp_path, format, setup_path):
# GH 16583
# Tests that reading a Series saved to an HDF file
# still works if a mode='r' argument is supplied
series = Series(range(10), dtype=np.float64)
path = tmp_path / setup_path
series.to_hdf(path, key="data", format=format)
result = read_hdf(path, key="data", mode="r")
tm.assert_series_equal(result, series)
@pytest.mark.filterwarnings(r"ignore:Period with BDay freq is deprecated:FutureWarning")
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_read_py2_hdf_file_in_py3(datapath):
# GH 16781
# tests reading a PeriodIndex DataFrame written in Python2 in Python3
# the file was generated in Python 2.7 like so:
#
# df = DataFrame([1.,2,3], index=pd.PeriodIndex(
# ['2015-01-01', '2015-01-02', '2015-01-05'], freq='B'))
# df.to_hdf('periodindex_0.20.1_x86_64_darwin_2.7.13.h5', 'p')
expected = DataFrame(
[1.0, 2, 3],
index=pd.PeriodIndex(["2015-01-01", "2015-01-02", "2015-01-05"], freq="B"),
)
with ensure_clean_store(
datapath(
"io", "data", "legacy_hdf", "periodindex_0.20.1_x86_64_darwin_2.7.13.h5"
),
mode="r",
) as store:
result = store["p"]
tm.assert_frame_equal(result, expected)
def test_read_infer_string(tmp_path, setup_path):
# GH#54431
pytest.importorskip("pyarrow")
df = DataFrame({"a": ["a", "b", None]})
path = tmp_path / setup_path
df.to_hdf(path, key="data", format="table")
with pd.option_context("future.infer_string", True):
result = read_hdf(path, key="data", mode="r")
expected = DataFrame(
{"a": ["a", "b", None]},
dtype="string[pyarrow_numpy]",
columns=Index(["a"], dtype="string[pyarrow_numpy]"),
)
tm.assert_frame_equal(result, expected)