You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
420 lines
14 KiB
420 lines
14 KiB
import contextlib
|
|
from datetime import datetime
|
|
import io
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import IS64
|
|
from pandas.errors import EmptyDataError
|
|
import pandas.util._test_decorators as td
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
from pandas.io.sas.sas7bdat import SAS7BDATReader
|
|
|
|
|
|
@pytest.fixture
|
|
def dirpath(datapath):
|
|
return datapath("io", "sas", "data")
|
|
|
|
|
|
@pytest.fixture(params=[(1, range(1, 16)), (2, [16])])
|
|
def data_test_ix(request, dirpath):
|
|
i, test_ix = request.param
|
|
fname = os.path.join(dirpath, f"test_sas7bdat_{i}.csv")
|
|
df = pd.read_csv(fname)
|
|
epoch = datetime(1960, 1, 1)
|
|
t1 = pd.to_timedelta(df["Column4"], unit="d")
|
|
df["Column4"] = (epoch + t1).astype("M8[s]")
|
|
t2 = pd.to_timedelta(df["Column12"], unit="d")
|
|
df["Column12"] = (epoch + t2).astype("M8[s]")
|
|
for k in range(df.shape[1]):
|
|
col = df.iloc[:, k]
|
|
if col.dtype == np.int64:
|
|
df.isetitem(k, df.iloc[:, k].astype(np.float64))
|
|
return df, test_ix
|
|
|
|
|
|
# https://github.com/cython/cython/issues/1720
|
|
class TestSAS7BDAT:
|
|
@pytest.mark.slow
|
|
def test_from_file(self, dirpath, data_test_ix):
|
|
expected, test_ix = data_test_ix
|
|
for k in test_ix:
|
|
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="utf-8")
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@pytest.mark.slow
|
|
def test_from_buffer(self, dirpath, data_test_ix):
|
|
expected, test_ix = data_test_ix
|
|
for k in test_ix:
|
|
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
|
|
with open(fname, "rb") as f:
|
|
byts = f.read()
|
|
buf = io.BytesIO(byts)
|
|
with pd.read_sas(
|
|
buf, format="sas7bdat", iterator=True, encoding="utf-8"
|
|
) as rdr:
|
|
df = rdr.read()
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@pytest.mark.slow
|
|
def test_from_iterator(self, dirpath, data_test_ix):
|
|
expected, test_ix = data_test_ix
|
|
for k in test_ix:
|
|
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
|
|
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
|
|
df = rdr.read(2)
|
|
tm.assert_frame_equal(df, expected.iloc[0:2, :])
|
|
df = rdr.read(3)
|
|
tm.assert_frame_equal(df, expected.iloc[2:5, :])
|
|
|
|
@pytest.mark.slow
|
|
def test_path_pathlib(self, dirpath, data_test_ix):
|
|
expected, test_ix = data_test_ix
|
|
for k in test_ix:
|
|
fname = Path(os.path.join(dirpath, f"test{k}.sas7bdat"))
|
|
df = pd.read_sas(fname, encoding="utf-8")
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@td.skip_if_no("py.path")
|
|
@pytest.mark.slow
|
|
def test_path_localpath(self, dirpath, data_test_ix):
|
|
from py.path import local as LocalPath
|
|
|
|
expected, test_ix = data_test_ix
|
|
for k in test_ix:
|
|
fname = LocalPath(os.path.join(dirpath, f"test{k}.sas7bdat"))
|
|
df = pd.read_sas(fname, encoding="utf-8")
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("chunksize", (3, 5, 10, 11))
|
|
@pytest.mark.parametrize("k", range(1, 17))
|
|
def test_iterator_loop(self, dirpath, k, chunksize):
|
|
# github #13654
|
|
fname = os.path.join(dirpath, f"test{k}.sas7bdat")
|
|
with pd.read_sas(fname, chunksize=chunksize, encoding="utf-8") as rdr:
|
|
y = 0
|
|
for x in rdr:
|
|
y += x.shape[0]
|
|
assert y == rdr.row_count
|
|
|
|
def test_iterator_read_too_much(self, dirpath):
|
|
# github #14734
|
|
fname = os.path.join(dirpath, "test1.sas7bdat")
|
|
with pd.read_sas(
|
|
fname, format="sas7bdat", iterator=True, encoding="utf-8"
|
|
) as rdr:
|
|
d1 = rdr.read(rdr.row_count + 20)
|
|
|
|
with pd.read_sas(fname, iterator=True, encoding="utf-8") as rdr:
|
|
d2 = rdr.read(rdr.row_count + 20)
|
|
tm.assert_frame_equal(d1, d2)
|
|
|
|
|
|
def test_encoding_options(datapath):
|
|
fname = datapath("io", "sas", "data", "test1.sas7bdat")
|
|
df1 = pd.read_sas(fname)
|
|
df2 = pd.read_sas(fname, encoding="utf-8")
|
|
for col in df1.columns:
|
|
try:
|
|
df1[col] = df1[col].str.decode("utf-8")
|
|
except AttributeError:
|
|
pass
|
|
tm.assert_frame_equal(df1, df2)
|
|
|
|
with contextlib.closing(SAS7BDATReader(fname, convert_header_text=False)) as rdr:
|
|
df3 = rdr.read()
|
|
for x, y in zip(df1.columns, df3.columns):
|
|
assert x == y.decode()
|
|
|
|
|
|
def test_encoding_infer(datapath):
|
|
fname = datapath("io", "sas", "data", "test1.sas7bdat")
|
|
|
|
with pd.read_sas(fname, encoding="infer", iterator=True) as df1_reader:
|
|
# check: is encoding inferred correctly from file
|
|
assert df1_reader.inferred_encoding == "cp1252"
|
|
df1 = df1_reader.read()
|
|
|
|
with pd.read_sas(fname, encoding="cp1252", iterator=True) as df2_reader:
|
|
df2 = df2_reader.read()
|
|
|
|
# check: reader reads correct information
|
|
tm.assert_frame_equal(df1, df2)
|
|
|
|
|
|
def test_productsales(datapath):
|
|
fname = datapath("io", "sas", "data", "productsales.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="utf-8")
|
|
fname = datapath("io", "sas", "data", "productsales.csv")
|
|
df0 = pd.read_csv(fname, parse_dates=["MONTH"])
|
|
vn = ["ACTUAL", "PREDICT", "QUARTER", "YEAR"]
|
|
df0[vn] = df0[vn].astype(np.float64)
|
|
|
|
df0["MONTH"] = df0["MONTH"].astype("M8[s]")
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
def test_12659(datapath):
|
|
fname = datapath("io", "sas", "data", "test_12659.sas7bdat")
|
|
df = pd.read_sas(fname)
|
|
fname = datapath("io", "sas", "data", "test_12659.csv")
|
|
df0 = pd.read_csv(fname)
|
|
df0 = df0.astype(np.float64)
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
def test_airline(datapath):
|
|
fname = datapath("io", "sas", "data", "airline.sas7bdat")
|
|
df = pd.read_sas(fname)
|
|
fname = datapath("io", "sas", "data", "airline.csv")
|
|
df0 = pd.read_csv(fname)
|
|
df0 = df0.astype(np.float64)
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
def test_date_time(datapath):
|
|
# Support of different SAS date/datetime formats (PR #15871)
|
|
fname = datapath("io", "sas", "data", "datetime.sas7bdat")
|
|
df = pd.read_sas(fname)
|
|
fname = datapath("io", "sas", "data", "datetime.csv")
|
|
df0 = pd.read_csv(
|
|
fname, parse_dates=["Date1", "Date2", "DateTime", "DateTimeHi", "Taiw"]
|
|
)
|
|
# GH 19732: Timestamps imported from sas will incur floating point errors
|
|
# See GH#56014 for discussion of the correct "expected" results
|
|
# We are really just testing that we are "close". This only seems to be
|
|
# an issue near the implementation bounds.
|
|
|
|
df[df.columns[3]] = df.iloc[:, 3].dt.round("us")
|
|
df0["Date1"] = df0["Date1"].astype("M8[s]")
|
|
df0["Date2"] = df0["Date2"].astype("M8[s]")
|
|
df0["DateTime"] = df0["DateTime"].astype("M8[ms]")
|
|
df0["Taiw"] = df0["Taiw"].astype("M8[s]")
|
|
|
|
res = df0["DateTimeHi"].astype("M8[us]").dt.round("ms")
|
|
df0["DateTimeHi"] = res.astype("M8[ms]")
|
|
|
|
if not IS64:
|
|
# No good reason for this, just what we get on the CI
|
|
df0.loc[0, "DateTimeHi"] += np.timedelta64(1, "ms")
|
|
df0.loc[[2, 3], "DateTimeHi"] -= np.timedelta64(1, "ms")
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
@pytest.mark.parametrize("column", ["WGT", "CYL"])
|
|
def test_compact_numerical_values(datapath, column):
|
|
# Regression test for #21616
|
|
fname = datapath("io", "sas", "data", "cars.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="latin-1")
|
|
# The two columns CYL and WGT in cars.sas7bdat have column
|
|
# width < 8 and only contain integral values.
|
|
# Test that pandas doesn't corrupt the numbers by adding
|
|
# decimals.
|
|
result = df[column]
|
|
expected = df[column].round()
|
|
tm.assert_series_equal(result, expected, check_exact=True)
|
|
|
|
|
|
def test_many_columns(datapath):
|
|
# Test for looking for column information in more places (PR #22628)
|
|
fname = datapath("io", "sas", "data", "many_columns.sas7bdat")
|
|
|
|
df = pd.read_sas(fname, encoding="latin-1")
|
|
|
|
fname = datapath("io", "sas", "data", "many_columns.csv")
|
|
df0 = pd.read_csv(fname, encoding="latin-1")
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
def test_inconsistent_number_of_rows(datapath):
|
|
# Regression test for issue #16615. (PR #22628)
|
|
fname = datapath("io", "sas", "data", "load_log.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="latin-1")
|
|
assert len(df) == 2097
|
|
|
|
|
|
def test_zero_variables(datapath):
|
|
# Check if the SAS file has zero variables (PR #18184)
|
|
fname = datapath("io", "sas", "data", "zero_variables.sas7bdat")
|
|
with pytest.raises(EmptyDataError, match="No columns to parse from file"):
|
|
pd.read_sas(fname)
|
|
|
|
|
|
def test_zero_rows(datapath):
|
|
# GH 18198
|
|
fname = datapath("io", "sas", "data", "zero_rows.sas7bdat")
|
|
result = pd.read_sas(fname)
|
|
expected = pd.DataFrame([{"char_field": "a", "num_field": 1.0}]).iloc[:0]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_corrupt_read(datapath):
|
|
# We don't really care about the exact failure, the important thing is
|
|
# that the resource should be cleaned up afterwards (BUG #35566)
|
|
fname = datapath("io", "sas", "data", "corrupt.sas7bdat")
|
|
msg = "'SAS7BDATReader' object has no attribute 'row_count'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
pd.read_sas(fname)
|
|
|
|
|
|
def test_max_sas_date(datapath):
|
|
# GH 20927
|
|
# NB. max datetime in SAS dataset is 31DEC9999:23:59:59.999
|
|
# but this is read as 29DEC9999:23:59:59.998993 by a buggy
|
|
# sas7bdat module
|
|
# See also GH#56014 for discussion of the correct "expected" results.
|
|
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="iso-8859-1")
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
"text": ["max", "normal"],
|
|
"dt_as_float": [253717747199.999, 1880323199.999],
|
|
"dt_as_dt": np.array(
|
|
[
|
|
datetime(9999, 12, 29, 23, 59, 59, 999000),
|
|
datetime(2019, 8, 1, 23, 59, 59, 999000),
|
|
],
|
|
dtype="M8[ms]",
|
|
),
|
|
"date_as_float": [2936547.0, 21762.0],
|
|
"date_as_date": np.array(
|
|
[
|
|
datetime(9999, 12, 29),
|
|
datetime(2019, 8, 1),
|
|
],
|
|
dtype="M8[s]",
|
|
),
|
|
},
|
|
columns=["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"],
|
|
)
|
|
|
|
if not IS64:
|
|
# No good reason for this, just what we get on the CI
|
|
expected.loc[:, "dt_as_dt"] -= np.timedelta64(1, "ms")
|
|
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
|
|
def test_max_sas_date_iterator(datapath):
|
|
# GH 20927
|
|
# when called as an iterator, only those chunks with a date > pd.Timestamp.max
|
|
# are returned as datetime.datetime, if this happens that whole chunk is returned
|
|
# as datetime.datetime
|
|
col_order = ["text", "dt_as_float", "dt_as_dt", "date_as_float", "date_as_date"]
|
|
fname = datapath("io", "sas", "data", "max_sas_date.sas7bdat")
|
|
results = []
|
|
for df in pd.read_sas(fname, encoding="iso-8859-1", chunksize=1):
|
|
# GH 19732: Timestamps imported from sas will incur floating point errors
|
|
df.reset_index(inplace=True, drop=True)
|
|
results.append(df)
|
|
expected = [
|
|
pd.DataFrame(
|
|
{
|
|
"text": ["max"],
|
|
"dt_as_float": [253717747199.999],
|
|
"dt_as_dt": np.array(
|
|
[datetime(9999, 12, 29, 23, 59, 59, 999000)], dtype="M8[ms]"
|
|
),
|
|
"date_as_float": [2936547.0],
|
|
"date_as_date": np.array([datetime(9999, 12, 29)], dtype="M8[s]"),
|
|
},
|
|
columns=col_order,
|
|
),
|
|
pd.DataFrame(
|
|
{
|
|
"text": ["normal"],
|
|
"dt_as_float": [1880323199.999],
|
|
"dt_as_dt": np.array(["2019-08-01 23:59:59.999"], dtype="M8[ms]"),
|
|
"date_as_float": [21762.0],
|
|
"date_as_date": np.array(["2019-08-01"], dtype="M8[s]"),
|
|
},
|
|
columns=col_order,
|
|
),
|
|
]
|
|
if not IS64:
|
|
# No good reason for this, just what we get on the CI
|
|
expected[0].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms")
|
|
expected[1].loc[0, "dt_as_dt"] -= np.timedelta64(1, "ms")
|
|
|
|
tm.assert_frame_equal(results[0], expected[0])
|
|
tm.assert_frame_equal(results[1], expected[1])
|
|
|
|
|
|
def test_null_date(datapath):
|
|
fname = datapath("io", "sas", "data", "dates_null.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="utf-8")
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
"datecol": np.array(
|
|
[
|
|
datetime(9999, 12, 29),
|
|
np.datetime64("NaT"),
|
|
],
|
|
dtype="M8[s]",
|
|
),
|
|
"datetimecol": np.array(
|
|
[
|
|
datetime(9999, 12, 29, 23, 59, 59, 999000),
|
|
np.datetime64("NaT"),
|
|
],
|
|
dtype="M8[ms]",
|
|
),
|
|
},
|
|
)
|
|
if not IS64:
|
|
# No good reason for this, just what we get on the CI
|
|
expected.loc[0, "datetimecol"] -= np.timedelta64(1, "ms")
|
|
tm.assert_frame_equal(df, expected)
|
|
|
|
|
|
def test_meta2_page(datapath):
|
|
# GH 35545
|
|
fname = datapath("io", "sas", "data", "test_meta2_page.sas7bdat")
|
|
df = pd.read_sas(fname)
|
|
assert len(df) == 1000
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"test_file, override_offset, override_value, expected_msg",
|
|
[
|
|
("test2.sas7bdat", 0x10000 + 55229, 0x80 | 0x0F, "Out of bounds"),
|
|
("test2.sas7bdat", 0x10000 + 55229, 0x10, "unknown control byte"),
|
|
("test3.sas7bdat", 118170, 184, "Out of bounds"),
|
|
],
|
|
)
|
|
def test_rle_rdc_exceptions(
|
|
datapath, test_file, override_offset, override_value, expected_msg
|
|
):
|
|
"""Errors in RLE/RDC decompression should propagate."""
|
|
with open(datapath("io", "sas", "data", test_file), "rb") as fd:
|
|
data = bytearray(fd.read())
|
|
data[override_offset] = override_value
|
|
with pytest.raises(Exception, match=expected_msg):
|
|
pd.read_sas(io.BytesIO(data), format="sas7bdat")
|
|
|
|
|
|
def test_0x40_control_byte(datapath):
|
|
# GH 31243
|
|
fname = datapath("io", "sas", "data", "0x40controlbyte.sas7bdat")
|
|
df = pd.read_sas(fname, encoding="ascii")
|
|
fname = datapath("io", "sas", "data", "0x40controlbyte.csv")
|
|
df0 = pd.read_csv(fname, dtype="object")
|
|
tm.assert_frame_equal(df, df0)
|
|
|
|
|
|
def test_0x00_control_byte(datapath):
|
|
# GH 47099
|
|
fname = datapath("io", "sas", "data", "0x00controlbyte.sas7bdat.bz2")
|
|
df = next(pd.read_sas(fname, chunksize=11_000))
|
|
assert df.shape == (11_000, 20)
|