You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
4.6 KiB

"""
Tests for the pandas custom headers in http(s) requests
"""
from functools import partial
import gzip
from io import BytesIO
import pytest
import pandas.util._test_decorators as td
import pandas as pd
import pandas._testing as tm
pytestmark = [
pytest.mark.single_cpu,
pytest.mark.network,
pytest.mark.filterwarnings(
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
),
]
def gzip_bytes(response_bytes):
with BytesIO() as bio:
with gzip.GzipFile(fileobj=bio, mode="w") as zipper:
zipper.write(response_bytes)
return bio.getvalue()
def csv_responder(df):
return df.to_csv(index=False).encode("utf-8")
def gz_csv_responder(df):
return gzip_bytes(csv_responder(df))
def json_responder(df):
return df.to_json().encode("utf-8")
def gz_json_responder(df):
return gzip_bytes(json_responder(df))
def html_responder(df):
return df.to_html(index=False).encode("utf-8")
def parquetpyarrow_reponder(df):
return df.to_parquet(index=False, engine="pyarrow")
def parquetfastparquet_responder(df):
# the fastparquet engine doesn't like to write to a buffer
# it can do it via the open_with function being set appropriately
# however it automatically calls the close method and wipes the buffer
# so just overwrite that attribute on this instance to not do that
# protected by an importorskip in the respective test
import fsspec
df.to_parquet(
"memory://fastparquet_user_agent.parquet",
index=False,
engine="fastparquet",
compression=None,
)
with fsspec.open("memory://fastparquet_user_agent.parquet", "rb") as f:
return f.read()
def pickle_respnder(df):
with BytesIO() as bio:
df.to_pickle(bio)
return bio.getvalue()
def stata_responder(df):
with BytesIO() as bio:
df.to_stata(bio, write_index=False)
return bio.getvalue()
@pytest.mark.parametrize(
"responder, read_method",
[
(csv_responder, pd.read_csv),
(json_responder, pd.read_json),
(
html_responder,
lambda *args, **kwargs: pd.read_html(*args, **kwargs)[0],
),
pytest.param(
parquetpyarrow_reponder,
partial(pd.read_parquet, engine="pyarrow"),
marks=td.skip_if_no("pyarrow"),
),
pytest.param(
parquetfastparquet_responder,
partial(pd.read_parquet, engine="fastparquet"),
# TODO(ArrayManager) fastparquet
marks=[
td.skip_if_no("fastparquet"),
td.skip_if_no("fsspec"),
td.skip_array_manager_not_yet_implemented,
],
),
(pickle_respnder, pd.read_pickle),
(stata_responder, pd.read_stata),
(gz_csv_responder, pd.read_csv),
(gz_json_responder, pd.read_json),
],
)
@pytest.mark.parametrize(
"storage_options",
[
None,
{"User-Agent": "foo"},
{"User-Agent": "foo", "Auth": "bar"},
],
)
def test_request_headers(responder, read_method, httpserver, storage_options):
expected = pd.DataFrame({"a": ["b"]})
default_headers = ["Accept-Encoding", "Host", "Connection", "User-Agent"]
if "gz" in responder.__name__:
extra = {"Content-Encoding": "gzip"}
if storage_options is None:
storage_options = extra
else:
storage_options |= extra
else:
extra = None
expected_headers = set(default_headers).union(
storage_options.keys() if storage_options else []
)
httpserver.serve_content(content=responder(expected), headers=extra)
result = read_method(httpserver.url, storage_options=storage_options)
tm.assert_frame_equal(result, expected)
request_headers = dict(httpserver.requests[0].headers)
for header in expected_headers:
exp = request_headers.pop(header)
if storage_options and header in storage_options:
assert exp == storage_options[header]
# No extra headers added
assert not request_headers
@pytest.mark.parametrize(
"engine",
[
"pyarrow",
"fastparquet",
],
)
def test_to_parquet_to_disk_with_storage_options(engine):
headers = {
"User-Agent": "custom",
"Auth": "other_custom",
}
pytest.importorskip(engine)
true_df = pd.DataFrame({"column_name": ["column_value"]})
msg = (
"storage_options passed with file object or non-fsspec file path|"
"storage_options passed with buffer, or non-supported URL"
)
with pytest.raises(ValueError, match=msg):
true_df.to_parquet("/tmp/junk.parquet", storage_options=headers, engine=engine)