You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
607 lines
21 KiB
607 lines
21 KiB
import datetime as dt
|
|
from datetime import datetime
|
|
|
|
import dateutil
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
Index,
|
|
MultiIndex,
|
|
Series,
|
|
Timestamp,
|
|
concat,
|
|
date_range,
|
|
to_timedelta,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestDatetimeConcat:
|
|
def test_concat_datetime64_block(self):
|
|
rng = date_range("1/1/2000", periods=10)
|
|
|
|
df = DataFrame({"time": rng})
|
|
|
|
result = concat([df, df])
|
|
assert (result.iloc[:10]["time"] == rng).all()
|
|
assert (result.iloc[10:]["time"] == rng).all()
|
|
|
|
def test_concat_datetime_datetime64_frame(self):
|
|
# GH#2624
|
|
rows = []
|
|
rows.append([datetime(2010, 1, 1), 1])
|
|
rows.append([datetime(2010, 1, 2), "hi"])
|
|
|
|
df2_obj = DataFrame.from_records(rows, columns=["date", "test"])
|
|
|
|
ind = date_range(start="2000/1/1", freq="D", periods=10)
|
|
df1 = DataFrame({"date": ind, "test": range(10)})
|
|
|
|
# it works!
|
|
concat([df1, df2_obj])
|
|
|
|
def test_concat_datetime_timezone(self):
|
|
# GH 18523
|
|
idx1 = date_range("2011-01-01", periods=3, freq="h", tz="Europe/Paris")
|
|
idx2 = date_range(start=idx1[0], end=idx1[-1], freq="h")
|
|
df1 = DataFrame({"a": [1, 2, 3]}, index=idx1)
|
|
df2 = DataFrame({"b": [1, 2, 3]}, index=idx2)
|
|
result = concat([df1, df2], axis=1)
|
|
|
|
exp_idx = DatetimeIndex(
|
|
[
|
|
"2011-01-01 00:00:00+01:00",
|
|
"2011-01-01 01:00:00+01:00",
|
|
"2011-01-01 02:00:00+01:00",
|
|
],
|
|
dtype="M8[ns, Europe/Paris]",
|
|
freq="h",
|
|
)
|
|
expected = DataFrame(
|
|
[[1, 1], [2, 2], [3, 3]], index=exp_idx, columns=["a", "b"]
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
idx3 = date_range("2011-01-01", periods=3, freq="h", tz="Asia/Tokyo")
|
|
df3 = DataFrame({"b": [1, 2, 3]}, index=idx3)
|
|
result = concat([df1, df3], axis=1)
|
|
|
|
exp_idx = DatetimeIndex(
|
|
[
|
|
"2010-12-31 15:00:00+00:00",
|
|
"2010-12-31 16:00:00+00:00",
|
|
"2010-12-31 17:00:00+00:00",
|
|
"2010-12-31 23:00:00+00:00",
|
|
"2011-01-01 00:00:00+00:00",
|
|
"2011-01-01 01:00:00+00:00",
|
|
]
|
|
).as_unit("ns")
|
|
|
|
expected = DataFrame(
|
|
[
|
|
[np.nan, 1],
|
|
[np.nan, 2],
|
|
[np.nan, 3],
|
|
[1, np.nan],
|
|
[2, np.nan],
|
|
[3, np.nan],
|
|
],
|
|
index=exp_idx,
|
|
columns=["a", "b"],
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# GH 13783: Concat after resample
|
|
result = concat([df1.resample("h").mean(), df2.resample("h").mean()], sort=True)
|
|
expected = DataFrame(
|
|
{"a": [1, 2, 3] + [np.nan] * 3, "b": [np.nan] * 3 + [1, 2, 3]},
|
|
index=idx1.append(idx1),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_concat_datetimeindex_freq(self):
|
|
# GH 3232
|
|
# Monotonic index result
|
|
dr = date_range("01-Jan-2013", periods=100, freq="50ms", tz="UTC")
|
|
data = list(range(100))
|
|
expected = DataFrame(data, index=dr)
|
|
result = concat([expected[:50], expected[50:]])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Non-monotonic index result
|
|
result = concat([expected[50:], expected[:50]])
|
|
expected = DataFrame(data[50:] + data[:50], index=dr[50:].append(dr[:50]))
|
|
expected.index._data.freq = None
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_concat_multiindex_datetime_object_index(self):
|
|
# https://github.com/pandas-dev/pandas/issues/11058
|
|
idx = Index(
|
|
[dt.date(2013, 1, 1), dt.date(2014, 1, 1), dt.date(2015, 1, 1)],
|
|
dtype="object",
|
|
)
|
|
|
|
s = Series(
|
|
["a", "b"],
|
|
index=MultiIndex.from_arrays(
|
|
[
|
|
[1, 2],
|
|
idx[:-1],
|
|
],
|
|
names=["first", "second"],
|
|
),
|
|
)
|
|
s2 = Series(
|
|
["a", "b"],
|
|
index=MultiIndex.from_arrays(
|
|
[[1, 2], idx[::2]],
|
|
names=["first", "second"],
|
|
),
|
|
)
|
|
mi = MultiIndex.from_arrays(
|
|
[[1, 2, 2], idx],
|
|
names=["first", "second"],
|
|
)
|
|
assert mi.levels[1].dtype == object
|
|
|
|
expected = DataFrame(
|
|
[["a", "a"], ["b", np.nan], [np.nan, "b"]],
|
|
index=mi,
|
|
)
|
|
result = concat([s, s2], axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_concat_NaT_series(self):
|
|
# GH 11693
|
|
# test for merging NaT series with datetime series.
|
|
x = Series(
|
|
date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="US/Eastern")
|
|
)
|
|
y = Series(pd.NaT, index=[0, 1], dtype="datetime64[ns, US/Eastern]")
|
|
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
|
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# all NaT with tz
|
|
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns, US/Eastern]")
|
|
result = concat([y, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_concat_NaT_series2(self):
|
|
# without tz
|
|
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h"))
|
|
y = Series(date_range("20151124 10:00", "20151124 11:00", freq="1h"))
|
|
y[:] = pd.NaT
|
|
expected = Series([x[0], x[1], pd.NaT, pd.NaT])
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
# all NaT without tz
|
|
x[:] = pd.NaT
|
|
expected = Series(pd.NaT, index=range(4), dtype="datetime64[ns]")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC"])
|
|
def test_concat_NaT_dataframes(self, tz):
|
|
# GH 12396
|
|
|
|
dti = DatetimeIndex([pd.NaT, pd.NaT], tz=tz)
|
|
first = DataFrame({0: dti})
|
|
second = DataFrame(
|
|
[[Timestamp("2015/01/01", tz=tz)], [Timestamp("2016/01/01", tz=tz)]],
|
|
index=[2, 3],
|
|
)
|
|
expected = DataFrame(
|
|
[
|
|
pd.NaT,
|
|
pd.NaT,
|
|
Timestamp("2015/01/01", tz=tz),
|
|
Timestamp("2016/01/01", tz=tz),
|
|
]
|
|
)
|
|
|
|
result = concat([first, second], axis=0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
|
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
|
@pytest.mark.parametrize("item", [pd.NaT, Timestamp("20150101")])
|
|
def test_concat_NaT_dataframes_all_NaT_axis_0(
|
|
self, tz1, tz2, item, using_array_manager
|
|
):
|
|
# GH 12396
|
|
|
|
# tz-naive
|
|
first = DataFrame([[pd.NaT], [pd.NaT]]).apply(lambda x: x.dt.tz_localize(tz1))
|
|
second = DataFrame([item]).apply(lambda x: x.dt.tz_localize(tz2))
|
|
|
|
result = concat([first, second], axis=0)
|
|
expected = DataFrame(Series([pd.NaT, pd.NaT, item], index=[0, 1, 0]))
|
|
expected = expected.apply(lambda x: x.dt.tz_localize(tz2))
|
|
if tz1 != tz2:
|
|
expected = expected.astype(object)
|
|
if item is pd.NaT and not using_array_manager:
|
|
# GH#18463
|
|
# TODO: setting nan here is to keep the test passing as we
|
|
# make assert_frame_equal stricter, but is nan really the
|
|
# ideal behavior here?
|
|
if tz1 is not None:
|
|
expected.iloc[-1, 0] = np.nan
|
|
else:
|
|
expected.iloc[:-1, 0] = np.nan
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
|
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
|
def test_concat_NaT_dataframes_all_NaT_axis_1(self, tz1, tz2):
|
|
# GH 12396
|
|
|
|
first = DataFrame(Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1))
|
|
second = DataFrame(Series([pd.NaT]).dt.tz_localize(tz2), columns=[1])
|
|
expected = DataFrame(
|
|
{
|
|
0: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1),
|
|
1: Series([pd.NaT, pd.NaT]).dt.tz_localize(tz2),
|
|
}
|
|
)
|
|
result = concat([first, second], axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("tz1", [None, "UTC"])
|
|
@pytest.mark.parametrize("tz2", [None, "UTC"])
|
|
def test_concat_NaT_series_dataframe_all_NaT(self, tz1, tz2):
|
|
# GH 12396
|
|
|
|
# tz-naive
|
|
first = Series([pd.NaT, pd.NaT]).dt.tz_localize(tz1)
|
|
second = DataFrame(
|
|
[
|
|
[Timestamp("2015/01/01", tz=tz2)],
|
|
[Timestamp("2016/01/01", tz=tz2)],
|
|
],
|
|
index=[2, 3],
|
|
)
|
|
|
|
expected = DataFrame(
|
|
[
|
|
pd.NaT,
|
|
pd.NaT,
|
|
Timestamp("2015/01/01", tz=tz2),
|
|
Timestamp("2016/01/01", tz=tz2),
|
|
]
|
|
)
|
|
if tz1 != tz2:
|
|
expected = expected.astype(object)
|
|
|
|
result = concat([first, second])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestTimezoneConcat:
|
|
def test_concat_tz_series(self):
|
|
# gh-11755: tz and no tz
|
|
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
|
y = Series(date_range("2012-01-01", "2012-01-02"))
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_concat_tz_series2(self):
|
|
# gh-11887: concat tz and object
|
|
x = Series(date_range("20151124 08:00", "20151124 09:00", freq="1h", tz="UTC"))
|
|
y = Series(["a", "b"])
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_concat_tz_series3(self, unit, unit2):
|
|
# see gh-12217 and gh-12306
|
|
# Concatenating two UTC times
|
|
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
|
first[0] = first[0].dt.tz_localize("UTC")
|
|
|
|
second = DataFrame([[datetime(2016, 1, 2)]], dtype=f"M8[{unit2}]")
|
|
second[0] = second[0].dt.tz_localize("UTC")
|
|
|
|
result = concat([first, second])
|
|
exp_unit = tm.get_finest_unit(unit, unit2)
|
|
assert result[0].dtype == f"datetime64[{exp_unit}, UTC]"
|
|
|
|
def test_concat_tz_series4(self, unit, unit2):
|
|
# Concatenating two London times
|
|
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
|
first[0] = first[0].dt.tz_localize("Europe/London")
|
|
|
|
second = DataFrame([[datetime(2016, 1, 2)]], dtype=f"M8[{unit2}]")
|
|
second[0] = second[0].dt.tz_localize("Europe/London")
|
|
|
|
result = concat([first, second])
|
|
exp_unit = tm.get_finest_unit(unit, unit2)
|
|
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
|
|
|
def test_concat_tz_series5(self, unit, unit2):
|
|
# Concatenating 2+1 London times
|
|
first = DataFrame(
|
|
[[datetime(2016, 1, 1)], [datetime(2016, 1, 2)]], dtype=f"M8[{unit}]"
|
|
)
|
|
first[0] = first[0].dt.tz_localize("Europe/London")
|
|
|
|
second = DataFrame([[datetime(2016, 1, 3)]], dtype=f"M8[{unit2}]")
|
|
second[0] = second[0].dt.tz_localize("Europe/London")
|
|
|
|
result = concat([first, second])
|
|
exp_unit = tm.get_finest_unit(unit, unit2)
|
|
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
|
|
|
def test_concat_tz_series6(self, unit, unit2):
|
|
# Concatenating 1+2 London times
|
|
first = DataFrame([[datetime(2016, 1, 1)]], dtype=f"M8[{unit}]")
|
|
first[0] = first[0].dt.tz_localize("Europe/London")
|
|
|
|
second = DataFrame(
|
|
[[datetime(2016, 1, 2)], [datetime(2016, 1, 3)]], dtype=f"M8[{unit2}]"
|
|
)
|
|
second[0] = second[0].dt.tz_localize("Europe/London")
|
|
|
|
result = concat([first, second])
|
|
exp_unit = tm.get_finest_unit(unit, unit2)
|
|
assert result[0].dtype == f"datetime64[{exp_unit}, Europe/London]"
|
|
|
|
def test_concat_tz_series_tzlocal(self):
|
|
# see gh-13583
|
|
x = [
|
|
Timestamp("2011-01-01", tz=dateutil.tz.tzlocal()),
|
|
Timestamp("2011-02-01", tz=dateutil.tz.tzlocal()),
|
|
]
|
|
y = [
|
|
Timestamp("2012-01-01", tz=dateutil.tz.tzlocal()),
|
|
Timestamp("2012-02-01", tz=dateutil.tz.tzlocal()),
|
|
]
|
|
|
|
result = concat([Series(x), Series(y)], ignore_index=True)
|
|
tm.assert_series_equal(result, Series(x + y))
|
|
assert result.dtype == "datetime64[ns, tzlocal()]"
|
|
|
|
def test_concat_tz_series_with_datetimelike(self):
|
|
# see gh-12620: tz and timedelta
|
|
x = [
|
|
Timestamp("2011-01-01", tz="US/Eastern"),
|
|
Timestamp("2011-02-01", tz="US/Eastern"),
|
|
]
|
|
y = [pd.Timedelta("1 day"), pd.Timedelta("2 day")]
|
|
result = concat([Series(x), Series(y)], ignore_index=True)
|
|
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
|
|
|
# tz and period
|
|
y = [pd.Period("2011-03", freq="M"), pd.Period("2011-04", freq="M")]
|
|
result = concat([Series(x), Series(y)], ignore_index=True)
|
|
tm.assert_series_equal(result, Series(x + y, dtype="object"))
|
|
|
|
def test_concat_tz_frame(self):
|
|
df2 = DataFrame(
|
|
{
|
|
"A": Timestamp("20130102", tz="US/Eastern"),
|
|
"B": Timestamp("20130603", tz="CET"),
|
|
},
|
|
index=range(5),
|
|
)
|
|
|
|
# concat
|
|
df3 = concat([df2.A.to_frame(), df2.B.to_frame()], axis=1)
|
|
tm.assert_frame_equal(df2, df3)
|
|
|
|
def test_concat_multiple_tzs(self):
|
|
# GH#12467
|
|
# combining datetime tz-aware and naive DataFrames
|
|
ts1 = Timestamp("2015-01-01", tz=None)
|
|
ts2 = Timestamp("2015-01-01", tz="UTC")
|
|
ts3 = Timestamp("2015-01-01", tz="EST")
|
|
|
|
df1 = DataFrame({"time": [ts1]})
|
|
df2 = DataFrame({"time": [ts2]})
|
|
df3 = DataFrame({"time": [ts3]})
|
|
|
|
results = concat([df1, df2]).reset_index(drop=True)
|
|
expected = DataFrame({"time": [ts1, ts2]}, dtype=object)
|
|
tm.assert_frame_equal(results, expected)
|
|
|
|
results = concat([df1, df3]).reset_index(drop=True)
|
|
expected = DataFrame({"time": [ts1, ts3]}, dtype=object)
|
|
tm.assert_frame_equal(results, expected)
|
|
|
|
results = concat([df2, df3]).reset_index(drop=True)
|
|
expected = DataFrame({"time": [ts2, ts3]})
|
|
tm.assert_frame_equal(results, expected)
|
|
|
|
def test_concat_multiindex_with_tz(self):
|
|
# GH 6606
|
|
df = DataFrame(
|
|
{
|
|
"dt": DatetimeIndex(
|
|
[
|
|
datetime(2014, 1, 1),
|
|
datetime(2014, 1, 2),
|
|
datetime(2014, 1, 3),
|
|
],
|
|
dtype="M8[ns, US/Pacific]",
|
|
),
|
|
"b": ["A", "B", "C"],
|
|
"c": [1, 2, 3],
|
|
"d": [4, 5, 6],
|
|
}
|
|
)
|
|
df = df.set_index(["dt", "b"])
|
|
|
|
exp_idx1 = DatetimeIndex(
|
|
["2014-01-01", "2014-01-02", "2014-01-03"] * 2,
|
|
dtype="M8[ns, US/Pacific]",
|
|
name="dt",
|
|
)
|
|
exp_idx2 = Index(["A", "B", "C"] * 2, name="b")
|
|
exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2])
|
|
expected = DataFrame(
|
|
{"c": [1, 2, 3] * 2, "d": [4, 5, 6] * 2}, index=exp_idx, columns=["c", "d"]
|
|
)
|
|
|
|
result = concat([df, df])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_concat_tz_not_aligned(self):
|
|
# GH#22796
|
|
ts = pd.to_datetime([1, 2]).tz_localize("UTC")
|
|
a = DataFrame({"A": ts})
|
|
b = DataFrame({"A": ts, "B": ts})
|
|
result = concat([a, b], sort=True, ignore_index=True)
|
|
expected = DataFrame(
|
|
{"A": list(ts) + list(ts), "B": [pd.NaT, pd.NaT] + list(ts)}
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"t1",
|
|
[
|
|
"2015-01-01",
|
|
pytest.param(
|
|
pd.NaT,
|
|
marks=pytest.mark.xfail(
|
|
reason="GH23037 incorrect dtype when concatenating"
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_concat_tz_NaT(self, t1):
|
|
# GH#22796
|
|
# Concatenating tz-aware multicolumn DataFrames
|
|
ts1 = Timestamp(t1, tz="UTC")
|
|
ts2 = Timestamp("2015-01-01", tz="UTC")
|
|
ts3 = Timestamp("2015-01-01", tz="UTC")
|
|
|
|
df1 = DataFrame([[ts1, ts2]])
|
|
df2 = DataFrame([[ts3]])
|
|
|
|
result = concat([df1, df2])
|
|
expected = DataFrame([[ts1, ts2], [ts3, pd.NaT]], index=[0, 0])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_concat_tz_with_empty(self):
|
|
# GH 9188
|
|
result = concat(
|
|
[DataFrame(date_range("2000", periods=1, tz="UTC")), DataFrame()]
|
|
)
|
|
expected = DataFrame(date_range("2000", periods=1, tz="UTC"))
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
class TestPeriodConcat:
|
|
def test_concat_period_series(self):
|
|
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
|
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="D"))
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="Period[D]")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_concat_period_multiple_freq_series(self):
|
|
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
|
y = Series(pd.PeriodIndex(["2015-10-01", "2016-01-01"], freq="M"))
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
assert result.dtype == "object"
|
|
|
|
def test_concat_period_other_series(self):
|
|
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
|
y = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="M"))
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
assert result.dtype == "object"
|
|
|
|
def test_concat_period_other_series2(self):
|
|
# non-period
|
|
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
|
y = Series(DatetimeIndex(["2015-11-01", "2015-12-01"]))
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
assert result.dtype == "object"
|
|
|
|
def test_concat_period_other_series3(self):
|
|
x = Series(pd.PeriodIndex(["2015-11-01", "2015-12-01"], freq="D"))
|
|
y = Series(["A", "B"])
|
|
expected = Series([x[0], x[1], y[0], y[1]], dtype="object")
|
|
result = concat([x, y], ignore_index=True)
|
|
tm.assert_series_equal(result, expected)
|
|
assert result.dtype == "object"
|
|
|
|
|
|
def test_concat_timedelta64_block():
|
|
rng = to_timedelta(np.arange(10), unit="s")
|
|
|
|
df = DataFrame({"time": rng})
|
|
|
|
result = concat([df, df])
|
|
tm.assert_frame_equal(result.iloc[:10], df)
|
|
tm.assert_frame_equal(result.iloc[10:], df)
|
|
|
|
|
|
def test_concat_multiindex_datetime_nat():
|
|
# GH#44900
|
|
left = DataFrame({"a": 1}, index=MultiIndex.from_tuples([(1, pd.NaT)]))
|
|
right = DataFrame(
|
|
{"b": 2}, index=MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
|
)
|
|
result = concat([left, right], axis="columns")
|
|
expected = DataFrame(
|
|
{"a": [1.0, np.nan], "b": 2}, MultiIndex.from_tuples([(1, pd.NaT), (2, pd.NaT)])
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_concat_float_datetime64(using_array_manager):
|
|
# GH#32934
|
|
df_time = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
|
df_float = DataFrame({"A": pd.array([1.0], dtype="float64")})
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"A": [
|
|
pd.array(["2000"], dtype="datetime64[ns]")[0],
|
|
pd.array([1.0], dtype="float64")[0],
|
|
]
|
|
},
|
|
index=[0, 0],
|
|
)
|
|
result = concat([df_time, df_float])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = DataFrame({"A": pd.array([], dtype="object")})
|
|
result = concat([df_time.iloc[:0], df_float.iloc[:0]])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
expected = DataFrame({"A": pd.array([1.0], dtype="object")})
|
|
result = concat([df_time.iloc[:0], df_float])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
if not using_array_manager:
|
|
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")})
|
|
msg = "The behavior of DataFrame concatenation with empty or all-NA entries"
|
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
|
result = concat([df_time, df_float.iloc[:0]])
|
|
tm.assert_frame_equal(result, expected)
|
|
else:
|
|
expected = DataFrame({"A": pd.array(["2000"], dtype="datetime64[ns]")}).astype(
|
|
{"A": "object"}
|
|
)
|
|
result = concat([df_time, df_float.iloc[:0]])
|
|
tm.assert_frame_equal(result, expected)
|