You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
2.8 KiB
80 lines
2.8 KiB
import numpy as np
|
|
import pytest
|
|
|
|
from pandas import (
|
|
Index,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.reshape.util import cartesian_product
|
|
|
|
|
|
class TestCartesianProduct:
|
|
def test_simple(self):
|
|
x, y = list("ABC"), [1, 22]
|
|
result1, result2 = cartesian_product([x, y])
|
|
expected1 = np.array(["A", "A", "B", "B", "C", "C"])
|
|
expected2 = np.array([1, 22, 1, 22, 1, 22])
|
|
tm.assert_numpy_array_equal(result1, expected1)
|
|
tm.assert_numpy_array_equal(result2, expected2)
|
|
|
|
def test_datetimeindex(self):
|
|
# regression test for GitHub issue #6439
|
|
# make sure that the ordering on datetimeindex is consistent
|
|
x = date_range("2000-01-01", periods=2)
|
|
result1, result2 = (Index(y).day for y in cartesian_product([x, x]))
|
|
expected1 = Index([1, 1, 2, 2], dtype=np.int32)
|
|
expected2 = Index([1, 2, 1, 2], dtype=np.int32)
|
|
tm.assert_index_equal(result1, expected1)
|
|
tm.assert_index_equal(result2, expected2)
|
|
|
|
def test_tzaware_retained(self):
|
|
x = date_range("2000-01-01", periods=2, tz="US/Pacific")
|
|
y = np.array([3, 4])
|
|
result1, result2 = cartesian_product([x, y])
|
|
|
|
expected = x.repeat(2)
|
|
tm.assert_index_equal(result1, expected)
|
|
|
|
def test_tzaware_retained_categorical(self):
|
|
x = date_range("2000-01-01", periods=2, tz="US/Pacific").astype("category")
|
|
y = np.array([3, 4])
|
|
result1, result2 = cartesian_product([x, y])
|
|
|
|
expected = x.repeat(2)
|
|
tm.assert_index_equal(result1, expected)
|
|
|
|
@pytest.mark.parametrize("x, y", [[[], []], [[0, 1], []], [[], ["a", "b", "c"]]])
|
|
def test_empty(self, x, y):
|
|
# product of empty factors
|
|
expected1 = np.array([], dtype=np.asarray(x).dtype)
|
|
expected2 = np.array([], dtype=np.asarray(y).dtype)
|
|
result1, result2 = cartesian_product([x, y])
|
|
tm.assert_numpy_array_equal(result1, expected1)
|
|
tm.assert_numpy_array_equal(result2, expected2)
|
|
|
|
def test_empty_input(self):
|
|
# empty product (empty input):
|
|
result = cartesian_product([])
|
|
expected = []
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"X", [1, [1], [1, 2], [[1], 2], "a", ["a"], ["a", "b"], [["a"], "b"]]
|
|
)
|
|
def test_invalid_input(self, X):
|
|
msg = "Input must be a list-like of list-likes"
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
cartesian_product(X=X)
|
|
|
|
def test_exceed_product_space(self):
|
|
# GH31355: raise useful error when produce space is too large
|
|
msg = "Product space too large to allocate arrays!"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
dims = [np.arange(0, 22, dtype=np.int16) for i in range(12)] + [
|
|
(np.arange(15128, dtype=np.int16)),
|
|
]
|
|
cartesian_product(X=dims)
|