You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

500 lines
14 KiB

"""
Also test support for datetime64[ns] in Series / DataFrame
"""
from datetime import (
datetime,
timedelta,
)
import re
from dateutil.tz import (
gettz,
tzutc,
)
import numpy as np
import pytest
import pytz
from pandas._libs import index as libindex
import pandas as pd
from pandas import (
DataFrame,
Series,
Timestamp,
date_range,
period_range,
)
import pandas._testing as tm
def test_fancy_getitem():
dti = date_range(
freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
)
s = Series(np.arange(len(dti)), index=dti)
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert s[48] == 48
assert s["1/2/2009"] == 48
assert s["2009-1-2"] == 48
assert s[datetime(2009, 1, 2)] == 48
assert s[Timestamp(datetime(2009, 1, 2))] == 48
with pytest.raises(KeyError, match=r"^'2009-1-3'$"):
s["2009-1-3"]
tm.assert_series_equal(
s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)]
)
def test_fancy_setitem():
dti = date_range(
freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1)
)
s = Series(np.arange(len(dti)), index=dti)
msg = "Series.__setitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
s[48] = -1
assert s.iloc[48] == -1
s["1/2/2009"] = -2
assert s.iloc[48] == -2
s["1/2/2009":"2009-06-05"] = -3
assert (s[48:54] == -3).all()
@pytest.mark.parametrize("tz_source", ["pytz", "dateutil"])
def test_getitem_setitem_datetime_tz(tz_source):
if tz_source == "pytz":
tzget = pytz.timezone
else:
# handle special case for utc in dateutil
tzget = lambda x: tzutc() if x == "UTC" else gettz(x)
N = 50
# testing with timezone, GH #2785
rng = date_range("1/1/1990", periods=N, freq="h", tz=tzget("US/Eastern"))
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
# also test Timestamp tz handling, GH #2789
result = ts.copy()
result["1990-01-01 09:00:00+00:00"] = 0
result["1990-01-01 09:00:00+00:00"] = ts.iloc[4]
tm.assert_series_equal(result, ts)
result = ts.copy()
result["1990-01-01 03:00:00-06:00"] = 0
result["1990-01-01 03:00:00-06:00"] = ts.iloc[4]
tm.assert_series_equal(result, ts)
# repeat with datetimes
result = ts.copy()
result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = 0
result[datetime(1990, 1, 1, 9, tzinfo=tzget("UTC"))] = ts.iloc[4]
tm.assert_series_equal(result, ts)
result = ts.copy()
dt = Timestamp(1990, 1, 1, 3).tz_localize(tzget("US/Central"))
dt = dt.to_pydatetime()
result[dt] = 0
result[dt] = ts.iloc[4]
tm.assert_series_equal(result, ts)
def test_getitem_setitem_datetimeindex():
N = 50
# testing with timezone, GH #2785
rng = date_range("1/1/1990", periods=N, freq="h", tz="US/Eastern")
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
result = ts["1990-01-01 04:00:00"]
expected = ts.iloc[4]
assert result == expected
result = ts.copy()
result["1990-01-01 04:00:00"] = 0
result["1990-01-01 04:00:00"] = ts.iloc[4]
tm.assert_series_equal(result, ts)
result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
result = ts.copy()
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0
result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8]
tm.assert_series_equal(result, ts)
lb = "1990-01-01 04:00:00"
rb = "1990-01-01 07:00:00"
# GH#18435 strings get a pass from tzawareness compat
result = ts[(ts.index >= lb) & (ts.index <= rb)]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
lb = "1990-01-01 04:00:00-0500"
rb = "1990-01-01 07:00:00-0500"
result = ts[(ts.index >= lb) & (ts.index <= rb)]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
# But we do not give datetimes a pass on tzawareness compat
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
naive = datetime(1990, 1, 1, 4)
for key in [naive, Timestamp(naive), np.datetime64(naive, "ns")]:
with pytest.raises(KeyError, match=re.escape(repr(key))):
# GH#36148 as of 2.0 we require tzawareness-compat
ts[key]
result = ts.copy()
# GH#36148 as of 2.0 we do not ignore tzawareness mismatch in indexing,
# so setting it as a new key casts to object rather than matching
# rng[4]
result[naive] = ts.iloc[4]
assert result.index.dtype == object
tm.assert_index_equal(result.index[:-1], rng.astype(object))
assert result.index[-1] == naive
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
with pytest.raises(TypeError, match=msg):
# GH#36148 require tzawareness compat as of 2.0
ts[naive : datetime(1990, 1, 1, 7)]
result = ts.copy()
with pytest.raises(TypeError, match=msg):
# GH#36148 require tzawareness compat as of 2.0
result[naive : datetime(1990, 1, 1, 7)] = 0
with pytest.raises(TypeError, match=msg):
# GH#36148 require tzawareness compat as of 2.0
result[naive : datetime(1990, 1, 1, 7)] = 99
# the __setitems__ here failed, so result should still match ts
tm.assert_series_equal(result, ts)
lb = naive
rb = datetime(1990, 1, 1, 7)
msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime"
with pytest.raises(TypeError, match=msg):
# tznaive vs tzaware comparison is invalid
# see GH#18376, GH#18162
ts[(ts.index >= lb) & (ts.index <= rb)]
lb = Timestamp(naive).tz_localize(rng.tzinfo)
rb = Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo)
result = ts[(ts.index >= lb) & (ts.index <= rb)]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
result = ts[ts.index[4]]
expected = ts.iloc[4]
assert result == expected
result = ts[ts.index[4:8]]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
result = ts.copy()
result[ts.index[4:8]] = 0
result.iloc[4:8] = ts.iloc[4:8]
tm.assert_series_equal(result, ts)
# also test partial date slicing
result = ts["1990-01-02"]
expected = ts[24:48]
tm.assert_series_equal(result, expected)
result = ts.copy()
result["1990-01-02"] = 0
result["1990-01-02"] = ts[24:48]
tm.assert_series_equal(result, ts)
def test_getitem_setitem_periodindex():
N = 50
rng = period_range("1/1/1990", periods=N, freq="h")
ts = Series(np.random.default_rng(2).standard_normal(N), index=rng)
result = ts["1990-01-01 04"]
expected = ts.iloc[4]
assert result == expected
result = ts.copy()
result["1990-01-01 04"] = 0
result["1990-01-01 04"] = ts.iloc[4]
tm.assert_series_equal(result, ts)
result = ts["1990-01-01 04":"1990-01-01 07"]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
result = ts.copy()
result["1990-01-01 04":"1990-01-01 07"] = 0
result["1990-01-01 04":"1990-01-01 07"] = ts[4:8]
tm.assert_series_equal(result, ts)
lb = "1990-01-01 04"
rb = "1990-01-01 07"
result = ts[(ts.index >= lb) & (ts.index <= rb)]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
# GH 2782
result = ts[ts.index[4]]
expected = ts.iloc[4]
assert result == expected
result = ts[ts.index[4:8]]
expected = ts[4:8]
tm.assert_series_equal(result, expected)
result = ts.copy()
result[ts.index[4:8]] = 0
result.iloc[4:8] = ts.iloc[4:8]
tm.assert_series_equal(result, ts)
def test_datetime_indexing():
index = date_range("1/1/2000", "1/7/2000")
index = index.repeat(3)
s = Series(len(index), index=index)
stamp = Timestamp("1/8/2000")
with pytest.raises(KeyError, match=re.escape(repr(stamp))):
s[stamp]
s[stamp] = 0
assert s[stamp] == 0
# not monotonic
s = Series(len(index), index=index)
s = s[::-1]
with pytest.raises(KeyError, match=re.escape(repr(stamp))):
s[stamp]
s[stamp] = 0
assert s[stamp] == 0
# test duplicates in time series
def test_indexing_with_duplicate_datetimeindex(
rand_series_with_duplicate_datetimeindex,
):
ts = rand_series_with_duplicate_datetimeindex
uniques = ts.index.unique()
for date in uniques:
result = ts[date]
mask = ts.index == date
total = (ts.index == date).sum()
expected = ts[mask]
if total > 1:
tm.assert_series_equal(result, expected)
else:
tm.assert_almost_equal(result, expected.iloc[0])
cp = ts.copy()
cp[date] = 0
expected = Series(np.where(mask, 0, ts), index=ts.index)
tm.assert_series_equal(cp, expected)
key = datetime(2000, 1, 6)
with pytest.raises(KeyError, match=re.escape(repr(key))):
ts[key]
# new index
ts[datetime(2000, 1, 6)] = 0
assert ts[datetime(2000, 1, 6)] == 0
def test_loc_getitem_over_size_cutoff(monkeypatch):
# #1821
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
# create large list of non periodic datetime
dates = []
sec = timedelta(seconds=1)
half_sec = timedelta(microseconds=500000)
d = datetime(2011, 12, 5, 20, 30)
n = 1100
for i in range(n):
dates.append(d)
dates.append(d + sec)
dates.append(d + sec + half_sec)
dates.append(d + sec + sec + half_sec)
d += 3 * sec
# duplicate some values in the list
duplicate_positions = np.random.default_rng(2).integers(0, len(dates) - 1, 20)
for p in duplicate_positions:
dates[p + 1] = dates[p]
df = DataFrame(
np.random.default_rng(2).standard_normal((len(dates), 4)),
index=dates,
columns=list("ABCD"),
)
pos = n * 3
timestamp = df.index[pos]
assert timestamp in df.index
# it works!
df.loc[timestamp]
assert len(df.loc[[timestamp]]) > 0
def test_indexing_over_size_cutoff_period_index(monkeypatch):
# GH 27136
monkeypatch.setattr(libindex, "_SIZE_CUTOFF", 1000)
n = 1100
idx = period_range("1/1/2000", freq="min", periods=n)
assert idx._engine.over_size_threshold
s = Series(np.random.default_rng(2).standard_normal(len(idx)), index=idx)
pos = n - 1
timestamp = idx[pos]
assert timestamp in s.index
# it works!
s[timestamp]
assert len(s.loc[[timestamp]]) > 0
def test_indexing_unordered():
# GH 2437
rng = date_range(start="2011-01-01", end="2011-01-15")
ts = Series(np.random.default_rng(2).random(len(rng)), index=rng)
ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]])
for t in ts.index:
expected = ts[t]
result = ts2[t]
assert expected == result
# GH 3448 (ranges)
def compare(slobj):
result = ts2[slobj].copy()
result = result.sort_index()
expected = ts[slobj]
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
for key in [
slice("2011-01-01", "2011-01-15"),
slice("2010-12-30", "2011-01-15"),
slice("2011-01-01", "2011-01-16"),
# partial ranges
slice("2011-01-01", "2011-01-6"),
slice("2011-01-06", "2011-01-8"),
slice("2011-01-06", "2011-01-12"),
]:
with pytest.raises(
KeyError, match="Value based partial slicing on non-monotonic"
):
compare(key)
# single values
result = ts2["2011"].sort_index()
expected = ts["2011"]
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
def test_indexing_unordered2():
# diff freq
rng = date_range(datetime(2005, 1, 1), periods=20, freq="ME")
ts = Series(np.arange(len(rng)), index=rng)
ts = ts.take(np.random.default_rng(2).permutation(20))
result = ts["2005"]
for t in result.index:
assert t.year == 2005
def test_indexing():
idx = date_range("2001-1-1", periods=20, freq="ME")
ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
# getting
# GH 3070, make sure semantics work on Series/Frame
result = ts["2001"]
tm.assert_series_equal(result, ts.iloc[:12])
df = DataFrame({"A": ts.copy()})
# GH#36179 pre-2.0 df["2001"] operated as slicing on rows. in 2.0 it behaves
# like any other key, so raises
with pytest.raises(KeyError, match="2001"):
df["2001"]
# setting
ts = Series(np.random.default_rng(2).random(len(idx)), index=idx)
expected = ts.copy()
expected.iloc[:12] = 1
ts["2001"] = 1
tm.assert_series_equal(ts, expected)
expected = df.copy()
expected.iloc[:12, 0] = 1
df.loc["2001", "A"] = 1
tm.assert_frame_equal(df, expected)
def test_getitem_str_month_with_datetimeindex():
# GH3546 (not including times on the last day)
idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:00", freq="h")
ts = Series(range(len(idx)), index=idx)
expected = ts["2013-05"]
tm.assert_series_equal(expected, ts)
idx = date_range(start="2013-05-31 00:00", end="2013-05-31 23:59", freq="s")
ts = Series(range(len(idx)), index=idx)
expected = ts["2013-05"]
tm.assert_series_equal(expected, ts)
def test_getitem_str_year_with_datetimeindex():
idx = [
Timestamp("2013-05-31 00:00"),
Timestamp(datetime(2013, 5, 31, 23, 59, 59, 999999)),
]
ts = Series(range(len(idx)), index=idx)
expected = ts["2013"]
tm.assert_series_equal(expected, ts)
def test_getitem_str_second_with_datetimeindex():
# GH14826, indexing with a seconds resolution string / datetime object
df = DataFrame(
np.random.default_rng(2).random((5, 5)),
columns=["open", "high", "low", "close", "volume"],
index=date_range("2012-01-02 18:01:00", periods=5, tz="US/Central", freq="s"),
)
# this is a single date, so will raise
with pytest.raises(KeyError, match=r"^'2012-01-02 18:01:02'$"):
df["2012-01-02 18:01:02"]
msg = r"Timestamp\('2012-01-02 18:01:02-0600', tz='US/Central'\)"
with pytest.raises(KeyError, match=msg):
df[df.index[2]]
def test_compare_datetime_with_all_none():
# GH#54870
ser = Series(["2020-01-01", "2020-01-02"], dtype="datetime64[ns]")
ser2 = Series([None, None])
result = ser > ser2
expected = Series([False, False])
tm.assert_series_equal(result, expected)