You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

519 lines
16 KiB

""" test get/set & misc """
from datetime import timedelta
import re
import numpy as np
import pytest
from pandas.errors import IndexingError
from pandas import (
NA,
DataFrame,
Index,
IndexSlice,
MultiIndex,
NaT,
Series,
Timedelta,
Timestamp,
concat,
date_range,
isna,
period_range,
timedelta_range,
)
import pandas._testing as tm
def test_basic_indexing():
s = Series(
np.random.default_rng(2).standard_normal(5), index=["a", "b", "a", "a", "b"]
)
warn_msg = "Series.__[sg]etitem__ treating keys as positions is deprecated"
msg = "index 5 is out of bounds for axis 0 with size 5"
with pytest.raises(IndexError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
s[5]
with pytest.raises(IndexError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
s[5] = 0
with pytest.raises(KeyError, match=r"^'c'$"):
s["c"]
s = s.sort_index()
with pytest.raises(IndexError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
s[5]
msg = r"index 5 is out of bounds for axis (0|1) with size 5|^5$"
with pytest.raises(IndexError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=warn_msg):
s[5] = 0
def test_getitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
# GH51053
dtype = any_numeric_dtype
idx = Index([1, 0, 1], dtype=dtype)
ser = Series(range(3), index=idx)
result = ser[1]
expected = Series([0, 2], index=Index([1, 1], dtype=dtype))
tm.assert_series_equal(result, expected, check_exact=True)
def test_setitem_numeric_should_not_fallback_to_positional(any_numeric_dtype):
# GH51053
dtype = any_numeric_dtype
idx = Index([1, 0, 1], dtype=dtype)
ser = Series(range(3), index=idx)
ser[1] = 10
expected = Series([10, 1, 10], index=idx)
tm.assert_series_equal(ser, expected, check_exact=True)
def test_basic_getitem_with_labels(datetime_series):
indices = datetime_series.index[[5, 10, 15]]
result = datetime_series[indices]
expected = datetime_series.reindex(indices)
tm.assert_series_equal(result, expected)
result = datetime_series[indices[0] : indices[2]]
expected = datetime_series.loc[indices[0] : indices[2]]
tm.assert_series_equal(result, expected)
def test_basic_getitem_dt64tz_values():
# GH12089
# with tz for values
ser = Series(
date_range("2011-01-01", periods=3, tz="US/Eastern"), index=["a", "b", "c"]
)
expected = Timestamp("2011-01-01", tz="US/Eastern")
result = ser.loc["a"]
assert result == expected
result = ser.iloc[0]
assert result == expected
result = ser["a"]
assert result == expected
def test_getitem_setitem_ellipsis(using_copy_on_write, warn_copy_on_write):
s = Series(np.random.default_rng(2).standard_normal(10))
result = s[...]
tm.assert_series_equal(result, s)
with tm.assert_cow_warning(warn_copy_on_write):
s[...] = 5
if not using_copy_on_write:
assert (result == 5).all()
@pytest.mark.parametrize(
"result_1, duplicate_item, expected_1",
[
[
Series({1: 12, 2: [1, 2, 2, 3]}),
Series({1: 313}),
Series({1: 12}, dtype=object),
],
[
Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}),
Series({1: [1, 2, 3]}),
Series({1: [1, 2, 3]}),
],
],
)
def test_getitem_with_duplicates_indices(result_1, duplicate_item, expected_1):
# GH 17610
result = result_1._append(duplicate_item)
expected = expected_1._append(duplicate_item)
tm.assert_series_equal(result[1], expected)
assert result[2] == result_1[2]
def test_getitem_setitem_integers():
# caused bug without test
s = Series([1, 2, 3], ["a", "b", "c"])
assert s.iloc[0] == s["a"]
s.iloc[0] = 5
tm.assert_almost_equal(s["a"], 5)
def test_series_box_timestamp():
rng = date_range("20090415", "20090519", freq="B")
ser = Series(rng)
assert isinstance(ser[0], Timestamp)
assert isinstance(ser.at[1], Timestamp)
assert isinstance(ser.iat[2], Timestamp)
assert isinstance(ser.loc[3], Timestamp)
assert isinstance(ser.iloc[4], Timestamp)
ser = Series(rng, index=rng)
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
assert isinstance(ser[0], Timestamp)
assert isinstance(ser.at[rng[1]], Timestamp)
assert isinstance(ser.iat[2], Timestamp)
assert isinstance(ser.loc[rng[3]], Timestamp)
assert isinstance(ser.iloc[4], Timestamp)
def test_series_box_timedelta():
rng = timedelta_range("1 day 1 s", periods=5, freq="h")
ser = Series(rng)
assert isinstance(ser[0], Timedelta)
assert isinstance(ser.at[1], Timedelta)
assert isinstance(ser.iat[2], Timedelta)
assert isinstance(ser.loc[3], Timedelta)
assert isinstance(ser.iloc[4], Timedelta)
def test_getitem_ambiguous_keyerror(indexer_sl):
ser = Series(range(10), index=list(range(0, 20, 2)))
with pytest.raises(KeyError, match=r"^1$"):
indexer_sl(ser)[1]
def test_getitem_dups_with_missing(indexer_sl):
# breaks reindex, so need to use .loc internally
# GH 4246
ser = Series([1, 2, 3, 4], ["foo", "bar", "foo", "bah"])
with pytest.raises(KeyError, match=re.escape("['bam'] not in index")):
indexer_sl(ser)[["foo", "bar", "bah", "bam"]]
def test_setitem_ambiguous_keyerror(indexer_sl):
s = Series(range(10), index=list(range(0, 20, 2)))
# equivalent of an append
s2 = s.copy()
indexer_sl(s2)[1] = 5
expected = concat([s, Series([5], index=[1])])
tm.assert_series_equal(s2, expected)
def test_setitem(datetime_series):
datetime_series[datetime_series.index[5]] = np.nan
datetime_series.iloc[[1, 2, 17]] = np.nan
datetime_series.iloc[6] = np.nan
assert np.isnan(datetime_series.iloc[6])
assert np.isnan(datetime_series.iloc[2])
datetime_series[np.isnan(datetime_series)] = 5
assert not np.isnan(datetime_series.iloc[2])
def test_setslice(datetime_series):
sl = datetime_series[5:20]
assert len(sl) == len(sl.index)
assert sl.index.is_unique is True
def test_basic_getitem_setitem_corner(datetime_series):
# invalid tuples, e.g. td.ts[:, None] vs. td.ts[:, 2]
msg = "key of type tuple not found and not a MultiIndex"
with pytest.raises(KeyError, match=msg):
datetime_series[:, 2]
with pytest.raises(KeyError, match=msg):
datetime_series[:, 2] = 2
# weird lists. [slice(0, 5)] raises but not two slices
msg = "Indexing with a single-item list"
with pytest.raises(ValueError, match=msg):
# GH#31299
datetime_series[[slice(None, 5)]]
# but we're OK with a single-element tuple
result = datetime_series[(slice(None, 5),)]
expected = datetime_series[:5]
tm.assert_series_equal(result, expected)
# OK
msg = r"unhashable type(: 'slice')?"
with pytest.raises(TypeError, match=msg):
datetime_series[[5, [None, None]]]
with pytest.raises(TypeError, match=msg):
datetime_series[[5, [None, None]]] = 2
def test_slice(string_series, object_series, using_copy_on_write, warn_copy_on_write):
original = string_series.copy()
numSlice = string_series[10:20]
numSliceEnd = string_series[-10:]
objSlice = object_series[10:20]
assert string_series.index[9] not in numSlice.index
assert object_series.index[9] not in objSlice.index
assert len(numSlice) == len(numSlice.index)
assert string_series[numSlice.index[0]] == numSlice[numSlice.index[0]]
assert numSlice.index[1] == string_series.index[11]
tm.assert_numpy_array_equal(np.array(numSliceEnd), np.array(string_series)[-10:])
# Test return view.
sl = string_series[10:20]
with tm.assert_cow_warning(warn_copy_on_write):
sl[:] = 0
if using_copy_on_write:
# Doesn't modify parent (CoW)
tm.assert_series_equal(string_series, original)
else:
assert (string_series[10:20] == 0).all()
def test_timedelta_assignment():
# GH 8209
s = Series([], dtype=object)
s.loc["B"] = timedelta(1)
tm.assert_series_equal(s, Series(Timedelta("1 days"), index=["B"]))
s = s.reindex(s.index.insert(0, "A"))
tm.assert_series_equal(s, Series([np.nan, Timedelta("1 days")], index=["A", "B"]))
s.loc["A"] = timedelta(1)
expected = Series(Timedelta("1 days"), index=["A", "B"])
tm.assert_series_equal(s, expected)
def test_underlying_data_conversion(using_copy_on_write):
# GH 4080
df = DataFrame({c: [1, 2, 3] for c in ["a", "b", "c"]})
return_value = df.set_index(["a", "b", "c"], inplace=True)
assert return_value is None
s = Series([1], index=[(2, 2, 2)])
df["val"] = 0
df_original = df.copy()
df
if using_copy_on_write:
with tm.raises_chained_assignment_error():
df["val"].update(s)
expected = df_original
else:
with tm.assert_produces_warning(FutureWarning, match="inplace method"):
df["val"].update(s)
expected = DataFrame(
{"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3], "val": [0, 1, 0]}
)
return_value = expected.set_index(["a", "b", "c"], inplace=True)
assert return_value is None
tm.assert_frame_equal(df, expected)
def test_preserve_refs(datetime_series):
seq = datetime_series.iloc[[5, 10, 15]]
seq.iloc[1] = np.nan
assert not np.isnan(datetime_series.iloc[10])
def test_multilevel_preserve_name(lexsorted_two_level_string_multiindex, indexer_sl):
index = lexsorted_two_level_string_multiindex
ser = Series(
np.random.default_rng(2).standard_normal(len(index)), index=index, name="sth"
)
result = indexer_sl(ser)["foo"]
assert result.name == ser.name
# miscellaneous methods
@pytest.mark.parametrize(
"index",
[
date_range("2014-01-01", periods=20, freq="MS"),
period_range("2014-01", periods=20, freq="M"),
timedelta_range("0", periods=20, freq="h"),
],
)
def test_slice_with_negative_step(index):
keystr1 = str(index[9])
keystr2 = str(index[13])
ser = Series(np.arange(20), index)
SLC = IndexSlice
for key in [keystr1, index[9]]:
tm.assert_indexing_slices_equivalent(ser, SLC[key::-1], SLC[9::-1])
tm.assert_indexing_slices_equivalent(ser, SLC[:key:-1], SLC[:8:-1])
for key2 in [keystr2, index[13]]:
tm.assert_indexing_slices_equivalent(ser, SLC[key2:key:-1], SLC[13:8:-1])
tm.assert_indexing_slices_equivalent(ser, SLC[key:key2:-1], SLC[0:0:-1])
def test_tuple_index():
# GH 35534 - Selecting values when a Series has an Index of tuples
s = Series([1, 2], index=[("a",), ("b",)])
assert s[("a",)] == 1
assert s[("b",)] == 2
s[("b",)] = 3
assert s[("b",)] == 3
def test_frozenset_index():
# GH35747 - Selecting values when a Series has an Index of frozenset
idx0, idx1 = frozenset("a"), frozenset("b")
s = Series([1, 2], index=[idx0, idx1])
assert s[idx0] == 1
assert s[idx1] == 2
s[idx1] = 3
assert s[idx1] == 3
def test_loc_setitem_all_false_indexer():
# GH#45778
ser = Series([1, 2], index=["a", "b"])
expected = ser.copy()
rhs = Series([6, 7], index=["a", "b"])
ser.loc[ser > 100] = rhs
tm.assert_series_equal(ser, expected)
def test_loc_boolean_indexer_non_matching_index():
# GH#46551
ser = Series([1])
result = ser.loc[Series([NA, False], dtype="boolean")]
expected = Series([], dtype="int64")
tm.assert_series_equal(result, expected)
def test_loc_boolean_indexer_miss_matching_index():
# GH#46551
ser = Series([1])
indexer = Series([NA, False], dtype="boolean", index=[1, 2])
with pytest.raises(IndexingError, match="Unalignable"):
ser.loc[indexer]
def test_loc_setitem_nested_data_enlargement():
# GH#48614
df = DataFrame({"a": [1]})
ser = Series({"label": df})
ser.loc["new_label"] = df
expected = Series({"label": df, "new_label": df})
tm.assert_series_equal(ser, expected)
def test_loc_ea_numeric_index_oob_slice_end():
# GH#50161
ser = Series(1, index=Index([0, 1, 2], dtype="Int64"))
result = ser.loc[2:3]
expected = Series(1, index=Index([2], dtype="Int64"))
tm.assert_series_equal(result, expected)
def test_getitem_bool_int_key():
# GH#48653
ser = Series({True: 1, False: 0})
with pytest.raises(KeyError, match="0"):
ser.loc[0]
@pytest.mark.parametrize("val", [{}, {"b": "x"}])
@pytest.mark.parametrize("indexer", [[], [False, False], slice(0, -1), np.array([])])
def test_setitem_empty_indexer(indexer, val):
# GH#45981
df = DataFrame({"a": [1, 2], **val})
expected = df.copy()
df.loc[indexer] = 1.5
tm.assert_frame_equal(df, expected)
class TestDeprecatedIndexers:
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_getitem_dict_and_set_deprecated(self, key):
# GH#42825 enforced in 2.0
ser = Series([1, 2])
with pytest.raises(TypeError, match="as an indexer is not supported"):
ser.loc[key]
@pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
def test_getitem_dict_and_set_deprecated_multiindex(self, key):
# GH#42825 enforced in 2.0
ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
with pytest.raises(TypeError, match="as an indexer is not supported"):
ser.loc[key]
@pytest.mark.parametrize("key", [{1}, {1: 1}])
def test_setitem_dict_and_set_disallowed(self, key):
# GH#42825 enforced in 2.0
ser = Series([1, 2])
with pytest.raises(TypeError, match="as an indexer is not supported"):
ser.loc[key] = 1
@pytest.mark.parametrize("key", [{1}, {1: 1}, ({1}, 2), ({1: 1}, 2)])
def test_setitem_dict_and_set_disallowed_multiindex(self, key):
# GH#42825 enforced in 2.0
ser = Series([1, 2], index=MultiIndex.from_tuples([(1, 2), (3, 4)]))
with pytest.raises(TypeError, match="as an indexer is not supported"):
ser.loc[key] = 1
class TestSetitemValidation:
# This is adapted from pandas/tests/arrays/masked/test_indexing.py
# but checks for warnings instead of errors.
def _check_setitem_invalid(self, ser, invalid, indexer, warn):
msg = "Setting an item of incompatible dtype is deprecated"
msg = re.escape(msg)
orig_ser = ser.copy()
with tm.assert_produces_warning(warn, match=msg):
ser[indexer] = invalid
ser = orig_ser.copy()
with tm.assert_produces_warning(warn, match=msg):
ser.iloc[indexer] = invalid
ser = orig_ser.copy()
with tm.assert_produces_warning(warn, match=msg):
ser.loc[indexer] = invalid
ser = orig_ser.copy()
with tm.assert_produces_warning(warn, match=msg):
ser[:] = invalid
_invalid_scalars = [
1 + 2j,
"True",
"1",
"1.0",
NaT,
np.datetime64("NaT"),
np.timedelta64("NaT"),
]
_indexers = [0, [0], slice(0, 1), [True, False, False], slice(None, None, None)]
@pytest.mark.parametrize(
"invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
)
@pytest.mark.parametrize("indexer", _indexers)
def test_setitem_validation_scalar_bool(self, invalid, indexer):
ser = Series([True, False, False], dtype="bool")
self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)
@pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
@pytest.mark.parametrize("indexer", _indexers)
def test_setitem_validation_scalar_int(self, invalid, any_int_numpy_dtype, indexer):
ser = Series([1, 2, 3], dtype=any_int_numpy_dtype)
if isna(invalid) and invalid is not NaT and not np.isnat(invalid):
warn = None
else:
warn = FutureWarning
self._check_setitem_invalid(ser, invalid, indexer, warn)
@pytest.mark.parametrize("invalid", _invalid_scalars + [True])
@pytest.mark.parametrize("indexer", _indexers)
def test_setitem_validation_scalar_float(self, invalid, float_numpy_dtype, indexer):
ser = Series([1, 2, None], dtype=float_numpy_dtype)
self._check_setitem_invalid(ser, invalid, indexer, FutureWarning)