You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
4.5 KiB
142 lines
4.5 KiB
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.parametrize("align_axis", [0, 1, "index", "columns"])
|
|
def test_compare_axis(align_axis):
|
|
# GH#30429
|
|
s1 = pd.Series(["a", "b", "c"])
|
|
s2 = pd.Series(["x", "b", "z"])
|
|
|
|
result = s1.compare(s2, align_axis=align_axis)
|
|
|
|
if align_axis in (1, "columns"):
|
|
indices = pd.Index([0, 2])
|
|
columns = pd.Index(["self", "other"])
|
|
expected = pd.DataFrame(
|
|
[["a", "x"], ["c", "z"]], index=indices, columns=columns
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
else:
|
|
indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
|
|
expected = pd.Series(["a", "x", "c", "z"], index=indices)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"keep_shape, keep_equal",
|
|
[
|
|
(True, False),
|
|
(False, True),
|
|
(True, True),
|
|
# False, False case is already covered in test_compare_axis
|
|
],
|
|
)
|
|
def test_compare_various_formats(keep_shape, keep_equal):
|
|
s1 = pd.Series(["a", "b", "c"])
|
|
s2 = pd.Series(["x", "b", "z"])
|
|
|
|
result = s1.compare(s2, keep_shape=keep_shape, keep_equal=keep_equal)
|
|
|
|
if keep_shape:
|
|
indices = pd.Index([0, 1, 2])
|
|
columns = pd.Index(["self", "other"])
|
|
if keep_equal:
|
|
expected = pd.DataFrame(
|
|
[["a", "x"], ["b", "b"], ["c", "z"]], index=indices, columns=columns
|
|
)
|
|
else:
|
|
expected = pd.DataFrame(
|
|
[["a", "x"], [np.nan, np.nan], ["c", "z"]],
|
|
index=indices,
|
|
columns=columns,
|
|
)
|
|
else:
|
|
indices = pd.Index([0, 2])
|
|
columns = pd.Index(["self", "other"])
|
|
expected = pd.DataFrame(
|
|
[["a", "x"], ["c", "z"]], index=indices, columns=columns
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_compare_with_equal_nulls():
|
|
# We want to make sure two NaNs are considered the same
|
|
# and dropped where applicable
|
|
s1 = pd.Series(["a", "b", np.nan])
|
|
s2 = pd.Series(["x", "b", np.nan])
|
|
|
|
result = s1.compare(s2)
|
|
expected = pd.DataFrame([["a", "x"]], columns=["self", "other"])
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
|
|
def test_compare_with_non_equal_nulls():
|
|
# We want to make sure the relevant NaNs do not get dropped
|
|
s1 = pd.Series(["a", "b", "c"])
|
|
s2 = pd.Series(["x", "b", np.nan])
|
|
|
|
result = s1.compare(s2, align_axis=0)
|
|
|
|
indices = pd.MultiIndex.from_product([[0, 2], ["self", "other"]])
|
|
expected = pd.Series(["a", "x", "c", np.nan], index=indices)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_compare_multi_index():
|
|
index = pd.MultiIndex.from_arrays([[0, 0, 1], [0, 1, 2]])
|
|
s1 = pd.Series(["a", "b", "c"], index=index)
|
|
s2 = pd.Series(["x", "b", "z"], index=index)
|
|
|
|
result = s1.compare(s2, align_axis=0)
|
|
|
|
indices = pd.MultiIndex.from_arrays(
|
|
[[0, 0, 1, 1], [0, 0, 2, 2], ["self", "other", "self", "other"]]
|
|
)
|
|
expected = pd.Series(["a", "x", "c", "z"], index=indices)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
def test_compare_unaligned_objects():
|
|
# test Series with different indices
|
|
msg = "Can only compare identically-labeled Series objects"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
|
|
ser2 = pd.Series([1, 2, 3], index=["a", "b", "d"])
|
|
ser1.compare(ser2)
|
|
|
|
# test Series with different lengths
|
|
msg = "Can only compare identically-labeled Series objects"
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser1 = pd.Series([1, 2, 3])
|
|
ser2 = pd.Series([1, 2, 3, 4])
|
|
ser1.compare(ser2)
|
|
|
|
|
|
def test_compare_datetime64_and_string():
|
|
# Issue https://github.com/pandas-dev/pandas/issues/45506
|
|
# Catch OverflowError when comparing datetime64 and string
|
|
data = [
|
|
{"a": "2015-07-01", "b": "08335394550"},
|
|
{"a": "2015-07-02", "b": "+49 (0) 0345 300033"},
|
|
{"a": "2015-07-03", "b": "+49(0)2598 04457"},
|
|
{"a": "2015-07-04", "b": "0741470003"},
|
|
{"a": "2015-07-05", "b": "04181 83668"},
|
|
]
|
|
dtypes = {"a": "datetime64[ns]", "b": "string"}
|
|
df = pd.DataFrame(data=data).astype(dtypes)
|
|
|
|
result_eq1 = df["a"].eq(df["b"])
|
|
result_eq2 = df["a"] == df["b"]
|
|
result_neq = df["a"] != df["b"]
|
|
|
|
expected_eq = pd.Series([False] * 5) # For .eq and ==
|
|
expected_neq = pd.Series([True] * 5) # For !=
|
|
|
|
tm.assert_series_equal(result_eq1, expected_eq)
|
|
tm.assert_series_equal(result_eq2, expected_eq)
|
|
tm.assert_series_equal(result_neq, expected_neq)
|