You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

814 lines
31 KiB

import re
import numpy as np
import pytest
from pandas._config import using_pyarrow_string_dtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import IntervalArray
class TestSeriesReplace:
def test_replace_explicit_none(self):
# GH#36984 if the user explicitly passes value=None, give it to them
ser = pd.Series([0, 0, ""], dtype=object)
result = ser.replace("", None)
expected = pd.Series([0, 0, None], dtype=object)
tm.assert_series_equal(result, expected)
# Cast column 2 to object to avoid implicit cast when setting entry to ""
df = pd.DataFrame(np.zeros((3, 3))).astype({2: object})
df.iloc[2, 2] = ""
result = df.replace("", None)
expected = pd.DataFrame(
{
0: np.zeros(3),
1: np.zeros(3),
2: np.array([0.0, 0.0, None], dtype=object),
}
)
assert expected.iloc[2, 2] is None
tm.assert_frame_equal(result, expected)
# GH#19998 same thing with object dtype
ser = pd.Series([10, 20, 30, "a", "a", "b", "a"])
result = ser.replace("a", None)
expected = pd.Series([10, 20, 30, None, None, "b", None])
assert expected.iloc[-1] is None
tm.assert_series_equal(result, expected)
def test_replace_noop_doesnt_downcast(self):
# GH#44498
ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object)
res = ser.replace({np.nan: None}) # should be a no-op
tm.assert_series_equal(res, ser)
assert res.dtype == object
# same thing but different calling convention
res = ser.replace(np.nan, None)
tm.assert_series_equal(res, ser)
assert res.dtype == object
def test_replace(self):
N = 50
ser = pd.Series(np.random.default_rng(2).standard_normal(N))
ser[0:4] = np.nan
ser[6:10] = 0
# replace list with a single value
return_value = ser.replace([np.nan], -1, inplace=True)
assert return_value is None
exp = ser.fillna(-1)
tm.assert_series_equal(ser, exp)
rs = ser.replace(0.0, np.nan)
ser[ser == 0.0] = np.nan
tm.assert_series_equal(rs, ser)
ser = pd.Series(
np.fabs(np.random.default_rng(2).standard_normal(N)),
pd.date_range("2020-01-01", periods=N),
dtype=object,
)
ser[:5] = np.nan
ser[6:10] = "foo"
ser[20:30] = "bar"
# replace list with a single value
msg = "Downcasting behavior in `replace`"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.replace([np.nan, "foo", "bar"], -1)
assert (rs[:5] == -1).all()
assert (rs[6:10] == -1).all()
assert (rs[20:30] == -1).all()
assert (pd.isna(ser[:5])).all()
# replace with different values
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
assert (rs[:5] == -1).all()
assert (rs[6:10] == -2).all()
assert (rs[20:30] == -3).all()
assert (pd.isna(ser[:5])).all()
# replace with different values with 2 lists
with tm.assert_produces_warning(FutureWarning, match=msg):
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
tm.assert_series_equal(rs, rs2)
# replace inplace
with tm.assert_produces_warning(FutureWarning, match=msg):
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
assert return_value is None
assert (ser[:5] == -1).all()
assert (ser[6:10] == -1).all()
assert (ser[20:30] == -1).all()
def test_replace_nan_with_inf(self):
ser = pd.Series([np.nan, 0, np.inf])
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT])
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
filled = ser.copy()
filled[4] = 0
tm.assert_series_equal(ser.replace(np.inf, 0), filled)
def test_replace_listlike_value_listlike_target(self, datetime_series):
ser = pd.Series(datetime_series.index)
tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0))
# malformed
msg = r"Replacement lists must match in length\. Expecting 3 got 2"
with pytest.raises(ValueError, match=msg):
ser.replace([1, 2, 3], [np.nan, 0])
# ser is dt64 so can't hold 1 or 2, so this replace is a no-op
result = ser.replace([1, 2], [np.nan, 0])
tm.assert_series_equal(result, ser)
ser = pd.Series([0, 1, 2, 3, 4])
result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0]))
def test_replace_gh5319(self):
# API change from 0.12?
# GH 5319
ser = pd.Series([0, np.nan, 2, 3, 4])
expected = ser.ffill()
msg = (
"Series.replace without 'value' and with non-dict-like "
"'to_replace' is deprecated"
)
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.replace([np.nan])
tm.assert_series_equal(result, expected)
ser = pd.Series([0, np.nan, 2, 3, 4])
expected = ser.ffill()
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.replace(np.nan)
tm.assert_series_equal(result, expected)
def test_replace_datetime64(self):
# GH 5797
ser = pd.Series(pd.date_range("20130101", periods=5))
expected = ser.copy()
expected.loc[2] = pd.Timestamp("20120101")
result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")})
tm.assert_series_equal(result, expected)
result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101"))
tm.assert_series_equal(result, expected)
def test_replace_nat_with_tz(self):
# GH 11792: Test with replacing NaT in a list with tz data
ts = pd.Timestamp("2015/01/01", tz="UTC")
s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")])
result = s.replace([np.nan, pd.NaT], pd.Timestamp.min)
expected = pd.Series([pd.Timestamp.min, ts], dtype=object)
tm.assert_series_equal(expected, result)
def test_replace_timedelta_td64(self):
tdi = pd.timedelta_range(0, periods=5)
ser = pd.Series(tdi)
# Using a single dict argument means we go through replace_list
result = ser.replace({ser[1]: ser[3]})
expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]])
tm.assert_series_equal(result, expected)
def test_replace_with_single_list(self):
ser = pd.Series([0, 1, 2, 3, 4])
msg2 = (
"Series.replace without 'value' and with non-dict-like "
"'to_replace' is deprecated"
)
with tm.assert_produces_warning(FutureWarning, match=msg2):
result = ser.replace([1, 2, 3])
tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4]))
s = ser.copy()
with tm.assert_produces_warning(FutureWarning, match=msg2):
return_value = s.replace([1, 2, 3], inplace=True)
assert return_value is None
tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4]))
# make sure things don't get corrupted when fillna call fails
s = ser.copy()
msg = (
r"Invalid fill method\. Expecting pad \(ffill\) or backfill "
r"\(bfill\)\. Got crash_cymbal"
)
msg3 = "The 'method' keyword in Series.replace is deprecated"
with pytest.raises(ValueError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=msg3):
return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal")
assert return_value is None
tm.assert_series_equal(s, ser)
def test_replace_mixed_types(self):
ser = pd.Series(np.arange(5), dtype="int64")
def check_replace(to_rep, val, expected):
sc = ser.copy()
result = ser.replace(to_rep, val)
return_value = sc.replace(to_rep, val, inplace=True)
assert return_value is None
tm.assert_series_equal(expected, result)
tm.assert_series_equal(expected, sc)
# 3.0 can still be held in our int64 series, so we do not upcast GH#44940
tr, v = [3], [3.0]
check_replace(tr, v, ser)
# Note this matches what we get with the scalars 3 and 3.0
check_replace(tr[0], v[0], ser)
# MUST upcast to float
e = pd.Series([0, 1, 2, 3.5, 4])
tr, v = [3], [3.5]
check_replace(tr, v, e)
# casts to object
e = pd.Series([0, 1, 2, 3.5, "a"])
tr, v = [3, 4], [3.5, "a"]
check_replace(tr, v, e)
# again casts to object
e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")])
tr, v = [3, 4], [3.5, pd.Timestamp("20130101")]
check_replace(tr, v, e)
# casts to object
e = pd.Series([0, 1, 2, 3.5, True], dtype="object")
tr, v = [3, 4], [3.5, True]
check_replace(tr, v, e)
# test an object with dates + floats + integers + strings
dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D"))
result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"])
expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object)
tm.assert_series_equal(result, expected)
def test_replace_bool_with_string_no_op(self):
s = pd.Series([True, False, True])
result = s.replace("fun", "in-the-sun")
tm.assert_series_equal(s, result)
def test_replace_bool_with_string(self):
# nonexistent elements
s = pd.Series([True, False, True])
result = s.replace(True, "2u")
expected = pd.Series(["2u", False, "2u"])
tm.assert_series_equal(expected, result)
def test_replace_bool_with_bool(self):
s = pd.Series([True, False, True])
result = s.replace(True, False)
expected = pd.Series([False] * len(s))
tm.assert_series_equal(expected, result)
def test_replace_with_dict_with_bool_keys(self):
s = pd.Series([True, False, True])
result = s.replace({"asdf": "asdb", True: "yes"})
expected = pd.Series(["yes", False, "yes"])
tm.assert_series_equal(result, expected)
def test_replace_Int_with_na(self, any_int_ea_dtype):
# GH 38267
result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA)
expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype)
tm.assert_series_equal(result, expected)
result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA)
result.replace(1, pd.NA, inplace=True)
tm.assert_series_equal(result, expected)
def test_replace2(self):
N = 50
ser = pd.Series(
np.fabs(np.random.default_rng(2).standard_normal(N)),
pd.date_range("2020-01-01", periods=N),
dtype=object,
)
ser[:5] = np.nan
ser[6:10] = "foo"
ser[20:30] = "bar"
# replace list with a single value
msg = "Downcasting behavior in `replace`"
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.replace([np.nan, "foo", "bar"], -1)
assert (rs[:5] == -1).all()
assert (rs[6:10] == -1).all()
assert (rs[20:30] == -1).all()
assert (pd.isna(ser[:5])).all()
# replace with different values
with tm.assert_produces_warning(FutureWarning, match=msg):
rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3})
assert (rs[:5] == -1).all()
assert (rs[6:10] == -2).all()
assert (rs[20:30] == -3).all()
assert (pd.isna(ser[:5])).all()
# replace with different values with 2 lists
with tm.assert_produces_warning(FutureWarning, match=msg):
rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3])
tm.assert_series_equal(rs, rs2)
# replace inplace
with tm.assert_produces_warning(FutureWarning, match=msg):
return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True)
assert return_value is None
assert (ser[:5] == -1).all()
assert (ser[6:10] == -1).all()
assert (ser[20:30] == -1).all()
@pytest.mark.parametrize("inplace", [True, False])
def test_replace_cascade(self, inplace):
# Test that replaced values are not replaced again
# GH #50778
ser = pd.Series([1, 2, 3])
expected = pd.Series([2, 3, 4])
res = ser.replace([1, 2, 3], [2, 3, 4], inplace=inplace)
if inplace:
tm.assert_series_equal(ser, expected)
else:
tm.assert_series_equal(res, expected)
def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype):
# GH 32621, GH#44940
ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype)
expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype)
result = ser.replace({"one": "1", "two": "2"})
tm.assert_series_equal(expected, result)
def test_replace_with_empty_dictlike(self):
# GH 15289
s = pd.Series(list("abcd"))
tm.assert_series_equal(s, s.replace({}))
empty_series = pd.Series([])
tm.assert_series_equal(s, s.replace(empty_series))
def test_replace_string_with_number(self):
# GH 15743
s = pd.Series([1, 2, 3])
result = s.replace("2", np.nan)
expected = pd.Series([1, 2, 3])
tm.assert_series_equal(expected, result)
def test_replace_replacer_equals_replacement(self):
# GH 20656
# make sure all replacers are matching against original values
s = pd.Series(["a", "b"])
expected = pd.Series(["b", "a"])
result = s.replace({"a": "b", "b": "a"})
tm.assert_series_equal(expected, result)
def test_replace_unicode_with_number(self):
# GH 15743
s = pd.Series([1, 2, 3])
result = s.replace("2", np.nan)
expected = pd.Series([1, 2, 3])
tm.assert_series_equal(expected, result)
def test_replace_mixed_types_with_string(self):
# Testing mixed
s = pd.Series([1, 2, 3, "4", 4, 5])
msg = "Downcasting behavior in `replace`"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = s.replace([2, "4"], np.nan)
expected = pd.Series([1, np.nan, 3, np.nan, 4, 5])
tm.assert_series_equal(expected, result)
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 0 in string")
@pytest.mark.parametrize(
"categorical, numeric",
[
(pd.Categorical(["A"], categories=["A", "B"]), [1]),
(pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]),
],
)
def test_replace_categorical(self, categorical, numeric):
# GH 24971, GH#23305
ser = pd.Series(categorical)
msg = "Downcasting behavior in `replace`"
msg = "with CategoricalDtype is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = ser.replace({"A": 1, "B": 2})
expected = pd.Series(numeric).astype("category")
if 2 not in expected.cat.categories:
# i.e. categories should be [1, 2] even if there are no "B"s present
# GH#44940
expected = expected.cat.add_categories(2)
tm.assert_series_equal(expected, result)
@pytest.mark.parametrize(
"data, data_exp", [(["a", "b", "c"], ["b", "b", "c"]), (["a"], ["b"])]
)
def test_replace_categorical_inplace(self, data, data_exp):
# GH 53358
result = pd.Series(data, dtype="category")
msg = "with CategoricalDtype is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result.replace(to_replace="a", value="b", inplace=True)
expected = pd.Series(data_exp, dtype="category")
tm.assert_series_equal(result, expected)
def test_replace_categorical_single(self):
# GH 26988
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
s = pd.Series(dti)
c = s.astype("category")
expected = c.copy()
expected = expected.cat.add_categories("foo")
expected[2] = "foo"
expected = expected.cat.remove_unused_categories()
assert c[2] != "foo"
msg = "with CategoricalDtype is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = c.replace(c[2], "foo")
tm.assert_series_equal(expected, result)
assert c[2] != "foo" # ensure non-inplace call does not alter original
msg = "with CategoricalDtype is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
return_value = c.replace(c[2], "foo", inplace=True)
assert return_value is None
tm.assert_series_equal(expected, c)
first_value = c[0]
msg = "with CategoricalDtype is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
return_value = c.replace(c[1], c[0], inplace=True)
assert return_value is None
assert c[0] == c[1] == first_value # test replacing with existing value
def test_replace_with_no_overflowerror(self):
# GH 25616
# casts to object without Exception from OverflowError
s = pd.Series([0, 1, 2, 3, 4])
result = s.replace([3], ["100000000000000000000"])
expected = pd.Series([0, 1, 2, "100000000000000000000", 4])
tm.assert_series_equal(result, expected)
s = pd.Series([0, "100000000000000000000", "100000000000000000001"])
result = s.replace(["100000000000000000000"], [1])
expected = pd.Series([0, 1, "100000000000000000001"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, to_replace, exp",
[
([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]),
(["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]),
],
)
def test_replace_commutative(self, ser, to_replace, exp):
# GH 16051
# DataFrame.replace() overwrites when values are non-numeric
series = pd.Series(ser)
expected = pd.Series(exp)
result = series.replace(to_replace)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])]
)
def test_replace_no_cast(self, ser, exp):
# GH 9113
# BUG: replace int64 dtype with bool coerces to int64
series = pd.Series(ser)
result = series.replace(2, True)
expected = pd.Series(exp)
tm.assert_series_equal(result, expected)
def test_replace_invalid_to_replace(self):
# GH 18634
# API: replace() should raise an exception if invalid argument is given
series = pd.Series(["a", "b", "c "])
msg = (
r"Expecting 'to_replace' to be either a scalar, array-like, "
r"dict or None, got invalid type.*"
)
msg2 = (
"Series.replace without 'value' and with non-dict-like "
"'to_replace' is deprecated"
)
with pytest.raises(TypeError, match=msg):
with tm.assert_produces_warning(FutureWarning, match=msg2):
series.replace(lambda x: x.strip())
@pytest.mark.parametrize("frame", [False, True])
def test_replace_nonbool_regex(self, frame):
obj = pd.Series(["a", "b", "c "])
if frame:
obj = obj.to_frame()
msg = "'to_replace' must be 'None' if 'regex' is not a bool"
with pytest.raises(ValueError, match=msg):
obj.replace(to_replace=["a"], regex="foo")
@pytest.mark.parametrize("frame", [False, True])
def test_replace_empty_copy(self, frame):
obj = pd.Series([], dtype=np.float64)
if frame:
obj = obj.to_frame()
res = obj.replace(4, 5, inplace=True)
assert res is None
res = obj.replace(4, 5, inplace=False)
tm.assert_equal(res, obj)
assert res is not obj
def test_replace_only_one_dictlike_arg(self, fixed_now_ts):
# GH#33340
ser = pd.Series([1, 2, "A", fixed_now_ts, True])
to_replace = {0: 1, 2: "A"}
value = "foo"
msg = "Series.replace cannot use dict-like to_replace and non-None value"
with pytest.raises(ValueError, match=msg):
ser.replace(to_replace, value)
to_replace = 1
value = {0: "foo", 2: "bar"}
msg = "Series.replace cannot use dict-value and non-None to_replace"
with pytest.raises(ValueError, match=msg):
ser.replace(to_replace, value)
def test_replace_extension_other(self, frame_or_series):
# https://github.com/pandas-dev/pandas/issues/34530
obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64"))
result = obj.replace("", "") # no exception
# should not have changed dtype
tm.assert_equal(obj, result)
def _check_replace_with_method(self, ser: pd.Series):
df = ser.to_frame()
msg1 = "The 'method' keyword in Series.replace is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg1):
res = ser.replace(ser[1], method="pad")
expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype)
tm.assert_series_equal(res, expected)
msg2 = "The 'method' keyword in DataFrame.replace is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg2):
res_df = df.replace(ser[1], method="pad")
tm.assert_frame_equal(res_df, expected.to_frame())
ser2 = ser.copy()
with tm.assert_produces_warning(FutureWarning, match=msg1):
res2 = ser2.replace(ser[1], method="pad", inplace=True)
assert res2 is None
tm.assert_series_equal(ser2, expected)
with tm.assert_produces_warning(FutureWarning, match=msg2):
res_df2 = df.replace(ser[1], method="pad", inplace=True)
assert res_df2 is None
tm.assert_frame_equal(df, expected.to_frame())
def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype):
arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype)
ser = pd.Series(arr)
self._check_replace_with_method(ser)
@pytest.mark.parametrize("as_categorical", [True, False])
def test_replace_interval_with_method(self, as_categorical):
# in particular interval that can't hold NA
idx = pd.IntervalIndex.from_breaks(range(4))
ser = pd.Series(idx)
if as_categorical:
ser = ser.astype("category")
self._check_replace_with_method(ser)
@pytest.mark.parametrize("as_period", [True, False])
@pytest.mark.parametrize("as_categorical", [True, False])
def test_replace_datetimelike_with_method(self, as_period, as_categorical):
idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific")
if as_period:
idx = idx.tz_localize(None).to_period("D")
ser = pd.Series(idx)
ser.iloc[-2] = pd.NaT
if as_categorical:
ser = ser.astype("category")
self._check_replace_with_method(ser)
def test_replace_with_compiled_regex(self):
# https://github.com/pandas-dev/pandas/issues/35680
s = pd.Series(["a", "b", "c"])
regex = re.compile("^a$")
result = s.replace({regex: "z"}, regex=True)
expected = pd.Series(["z", "b", "c"])
tm.assert_series_equal(result, expected)
def test_pandas_replace_na(self):
# GH#43344
ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string")
regex_mapping = {
"AA": "CC",
"BB": "CC",
"EE": "CC",
"CC": "CC-REPL",
}
result = ser.replace(regex_mapping, regex=True)
exp = pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string")
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize(
"dtype, input_data, to_replace, expected_data",
[
("bool", [True, False], {True: False}, [False, False]),
("int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
("Int64", [1, 2], {1: 10, 2: 20}, [10, 20]),
("float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
("Float64", [1.1, 2.2], {1.1: 10.1, 2.2: 20.5}, [10.1, 20.5]),
("string", ["one", "two"], {"one": "1", "two": "2"}, ["1", "2"]),
(
pd.IntervalDtype("int64"),
IntervalArray([pd.Interval(1, 2), pd.Interval(2, 3)]),
{pd.Interval(1, 2): pd.Interval(10, 20)},
IntervalArray([pd.Interval(10, 20), pd.Interval(2, 3)]),
),
(
pd.IntervalDtype("float64"),
IntervalArray([pd.Interval(1.0, 2.7), pd.Interval(2.8, 3.1)]),
{pd.Interval(1.0, 2.7): pd.Interval(10.6, 20.8)},
IntervalArray([pd.Interval(10.6, 20.8), pd.Interval(2.8, 3.1)]),
),
(
pd.PeriodDtype("M"),
[pd.Period("2020-05", freq="M")],
{pd.Period("2020-05", freq="M"): pd.Period("2020-06", freq="M")},
[pd.Period("2020-06", freq="M")],
),
],
)
def test_replace_dtype(self, dtype, input_data, to_replace, expected_data):
# GH#33484
ser = pd.Series(input_data, dtype=dtype)
result = ser.replace(to_replace)
expected = pd.Series(expected_data, dtype=dtype)
tm.assert_series_equal(result, expected)
def test_replace_string_dtype(self):
# GH#40732, GH#44940
ser = pd.Series(["one", "two", np.nan], dtype="string")
res = ser.replace({"one": "1", "two": "2"})
expected = pd.Series(["1", "2", np.nan], dtype="string")
tm.assert_series_equal(res, expected)
# GH#31644
ser2 = pd.Series(["A", np.nan], dtype="string")
res2 = ser2.replace("A", "B")
expected2 = pd.Series(["B", np.nan], dtype="string")
tm.assert_series_equal(res2, expected2)
ser3 = pd.Series(["A", "B"], dtype="string")
res3 = ser3.replace("A", pd.NA)
expected3 = pd.Series([pd.NA, "B"], dtype="string")
tm.assert_series_equal(res3, expected3)
def test_replace_string_dtype_list_to_replace(self):
# GH#41215, GH#44940
ser = pd.Series(["abc", "def"], dtype="string")
res = ser.replace(["abc", "any other string"], "xyz")
expected = pd.Series(["xyz", "def"], dtype="string")
tm.assert_series_equal(res, expected)
def test_replace_string_dtype_regex(self):
# GH#31644
ser = pd.Series(["A", "B"], dtype="string")
res = ser.replace(r".", "C", regex=True)
expected = pd.Series(["C", "C"], dtype="string")
tm.assert_series_equal(res, expected)
def test_replace_nullable_numeric(self):
# GH#40732, GH#44940
floats = pd.Series([1.0, 2.0, 3.999, 4.4], dtype=pd.Float64Dtype())
assert floats.replace({1.0: 9}).dtype == floats.dtype
assert floats.replace(1.0, 9).dtype == floats.dtype
assert floats.replace({1.0: 9.0}).dtype == floats.dtype
assert floats.replace(1.0, 9.0).dtype == floats.dtype
res = floats.replace(to_replace=[1.0, 2.0], value=[9.0, 10.0])
assert res.dtype == floats.dtype
ints = pd.Series([1, 2, 3, 4], dtype=pd.Int64Dtype())
assert ints.replace({1: 9}).dtype == ints.dtype
assert ints.replace(1, 9).dtype == ints.dtype
assert ints.replace({1: 9.0}).dtype == ints.dtype
assert ints.replace(1, 9.0).dtype == ints.dtype
# nullable (for now) raises instead of casting
with pytest.raises(TypeError, match="Invalid value"):
ints.replace({1: 9.5})
with pytest.raises(TypeError, match="Invalid value"):
ints.replace(1, 9.5)
@pytest.mark.xfail(using_pyarrow_string_dtype(), reason="can't fill 1 in string")
@pytest.mark.parametrize("regex", [False, True])
def test_replace_regex_dtype_series(self, regex):
# GH-48644
series = pd.Series(["0"])
expected = pd.Series([1])
msg = "Downcasting behavior in `replace`"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = series.replace(to_replace="0", value=1, regex=regex)
tm.assert_series_equal(result, expected)
def test_replace_different_int_types(self, any_int_numpy_dtype):
# GH#45311
labs = pd.Series([1, 1, 1, 0, 0, 2, 2, 2], dtype=any_int_numpy_dtype)
maps = pd.Series([0, 2, 1], dtype=any_int_numpy_dtype)
map_dict = dict(zip(maps.values, maps.index))
result = labs.replace(map_dict)
expected = labs.replace({0: 0, 2: 1, 1: 2})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("val", [2, np.nan, 2.0])
def test_replace_value_none_dtype_numeric(self, val):
# GH#48231
ser = pd.Series([1, val])
result = ser.replace(val, None)
expected = pd.Series([1, None], dtype=object)
tm.assert_series_equal(result, expected)
def test_replace_change_dtype_series(self, using_infer_string):
# GH#25797
df = pd.DataFrame.from_dict({"Test": ["0.5", True, "0.6"]})
warn = FutureWarning if using_infer_string else None
with tm.assert_produces_warning(warn, match="Downcasting"):
df["Test"] = df["Test"].replace([True], [np.nan])
expected = pd.DataFrame.from_dict({"Test": ["0.5", np.nan, "0.6"]})
tm.assert_frame_equal(df, expected)
df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
df["Test"] = df["Test"].replace([None], [np.nan])
tm.assert_frame_equal(df, expected)
df = pd.DataFrame.from_dict({"Test": ["0.5", None, "0.6"]})
df["Test"] = df["Test"].fillna(np.nan)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("dtype", ["object", "Int64"])
def test_replace_na_in_obj_column(self, dtype):
# GH#47480
ser = pd.Series([0, 1, pd.NA], dtype=dtype)
expected = pd.Series([0, 2, pd.NA], dtype=dtype)
result = ser.replace(to_replace=1, value=2)
tm.assert_series_equal(result, expected)
ser.replace(to_replace=1, value=2, inplace=True)
tm.assert_series_equal(ser, expected)
@pytest.mark.parametrize("val", [0, 0.5])
def test_replace_numeric_column_with_na(self, val):
# GH#50758
ser = pd.Series([val, 1])
expected = pd.Series([val, pd.NA])
result = ser.replace(to_replace=1, value=pd.NA)
tm.assert_series_equal(result, expected)
ser.replace(to_replace=1, value=pd.NA, inplace=True)
tm.assert_series_equal(ser, expected)
def test_replace_ea_float_with_bool(self):
# GH#55398
ser = pd.Series([0.0], dtype="Float64")
expected = ser.copy()
result = ser.replace(False, 1.0)
tm.assert_series_equal(result, expected)
ser = pd.Series([False], dtype="boolean")
expected = ser.copy()
result = ser.replace(0.0, True)
tm.assert_series_equal(result, expected)