You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.2 KiB
77 lines
2.2 KiB
import numpy as np
|
|
|
|
from pandas import (
|
|
Categorical,
|
|
IntervalIndex,
|
|
Series,
|
|
date_range,
|
|
)
|
|
import pandas._testing as tm
|
|
|
|
|
|
class TestUnique:
|
|
def test_unique_uint64(self):
|
|
ser = Series([1, 2, 2**63, 2**63], dtype=np.uint64)
|
|
res = ser.unique()
|
|
exp = np.array([1, 2, 2**63], dtype=np.uint64)
|
|
tm.assert_numpy_array_equal(res, exp)
|
|
|
|
def test_unique_data_ownership(self):
|
|
# it works! GH#1807
|
|
Series(Series(["a", "c", "b"]).unique()).sort_values()
|
|
|
|
def test_unique(self):
|
|
# GH#714 also, dtype=float
|
|
ser = Series([1.2345] * 100)
|
|
ser[::2] = np.nan
|
|
result = ser.unique()
|
|
assert len(result) == 2
|
|
|
|
# explicit f4 dtype
|
|
ser = Series([1.2345] * 100, dtype="f4")
|
|
ser[::2] = np.nan
|
|
result = ser.unique()
|
|
assert len(result) == 2
|
|
|
|
def test_unique_nan_object_dtype(self):
|
|
# NAs in object arrays GH#714
|
|
ser = Series(["foo"] * 100, dtype="O")
|
|
ser[::2] = np.nan
|
|
result = ser.unique()
|
|
assert len(result) == 2
|
|
|
|
def test_unique_none(self):
|
|
# decision about None
|
|
ser = Series([1, 2, 3, None, None, None], dtype=object)
|
|
result = ser.unique()
|
|
expected = np.array([1, 2, 3, None], dtype=object)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_unique_categorical(self):
|
|
# GH#18051
|
|
cat = Categorical([])
|
|
ser = Series(cat)
|
|
result = ser.unique()
|
|
tm.assert_categorical_equal(result, cat)
|
|
|
|
cat = Categorical([np.nan])
|
|
ser = Series(cat)
|
|
result = ser.unique()
|
|
tm.assert_categorical_equal(result, cat)
|
|
|
|
def test_tz_unique(self):
|
|
# GH 46128
|
|
dti1 = date_range("2016-01-01", periods=3)
|
|
ii1 = IntervalIndex.from_breaks(dti1)
|
|
ser1 = Series(ii1)
|
|
uni1 = ser1.unique()
|
|
tm.assert_interval_array_equal(ser1.array, uni1)
|
|
|
|
dti2 = date_range("2016-01-01", periods=3, tz="US/Eastern")
|
|
ii2 = IntervalIndex.from_breaks(dti2)
|
|
ser2 = Series(ii2)
|
|
uni2 = ser2.unique()
|
|
tm.assert_interval_array_equal(ser2.array, uni2)
|
|
|
|
assert uni1.dtype != uni2.dtype
|