# data1_analysis.py import matplotlib.pyplot as plt import numpy as np import pandas as pd import math def tem_curve(data): """温度曲线绘制""" hour = list(data['小时']) tem = list(data['温度']) for i in range(0, 24): if math.isnan(tem[i]) == True: tem[i] = tem[i - 1] tem_ave = sum(tem) / 24 # 求平均温度 tem_max = max(tem) tem_max_hour = hour[tem.index(tem_max)] # 求最高温度 tem_min = min(tem) tem_min_hour = hour[tem.index(tem_min)] # 求最低温度 x = [] y = [] for i in range(0, 24): x.append(i) y.append(tem[hour.index(i)]) plt.figure(1) plt.plot(x, y, color='red', label='温度') # 画出温度曲线 plt.scatter(x, y, color='red') # 点出每个时刻的温度点 plt.plot([0, 24], [tem_ave, tem_ave], c='blue', linestyle='--', label='平均温度') # 画出平均温度虚线 plt.text(tem_max_hour + 0.15, tem_max + 0.15, str(tem_max), ha='center', va='bottom', fontsize=10.5) # 标出最高温度 plt.text(tem_min_hour + 0.15, tem_min + 0.15, str(tem_min), ha='center', va='bottom', fontsize=10.5) # 标出最低温度 plt.xticks(x) plt.legend() plt.title('一天温度变化曲线图') plt.xlabel('时间/h') plt.ylabel('摄氏度/℃') plt.show() def hum_curve(data): """相对湿度曲线绘制""" hour = list(data['小时']) hum = list(data['相对湿度']) for i in range(0, 24): if math.isnan(hum[i]) == True: hum[i] = hum[i - 1] hum_ave = sum(hum) / 24 # 求平均相对湿度 hum_max = max(hum) hum_max_hour = hour[hum.index(hum_max)] # 求最高相对湿度 hum_min = min(hum) hum_min_hour = hour[hum.index(hum_min)] # 求最低相对湿度 x = [] y = [] for i in range(0, 24): x.append(i) y.append(hum[hour.index(i)]) plt.figure(2) plt.plot(x, y, color='blue', label='相对湿度') # 画出相对湿度曲线 plt.scatter(x, y, color='blue') # 点出每个时刻的相对湿度 plt.plot([0, 24], [hum_ave, hum_ave], c='red', linestyle='--', label='平均相对湿度') # 画出平均相对湿度虚线 plt.text(hum_max_hour + 0.15, hum_max + 0.15, str(hum_max), ha='center', va='bottom', fontsize=10.5) # 标出最高相对湿度 plt.text(hum_min_hour + 0.15, hum_min + 0.15, str(hum_min), ha='center', va='bottom', fontsize=10.5) # 标出最低相对湿度 plt.xticks(x) plt.legend() plt.title('一天相对湿度变化曲线图') plt.xlabel('时间/h') plt.ylabel('百分比/%') plt.show() def air_curve(data): """空气质量曲线绘制""" hour = list(data['小时']) air = list(data['空气质量']) print(type(air[0])) for i in range(0, 24): if math.isnan(air[i]) == True: air[i] = air[i - 1] air_ave = sum(air) / 24 # 求平均空气质量 air_max = max(air) air_max_hour = hour[air.index(air_max)] # 求最高空气质量 air_min = min(air) air_min_hour = hour[air.index(air_min)] # 求最低空气质量 x = [] y = [] for i in range(0, 24): x.append(i) y.append(air[hour.index(i)]) plt.figure(3) for i in range(0, 24): if y[i] <= 50: plt.bar(x[i], y[i], color='lightgreen', width=0.7) # 1等级 elif y[i] <= 100: plt.bar(x[i], y[i], color='wheat', width=0.7) # 2等级 elif y[i] <= 150: plt.bar(x[i], y[i], color='orange', width=0.7) # 3等级 elif y[i] <= 200: plt.bar(x[i], y[i], color='orangered', width=0.7) # 4等级 elif y[i] <= 300: plt.bar(x[i], y[i], color='darkviolet', width=0.7) # 5等级 elif y[i] > 300: plt.bar(x[i], y[i], color='maroon', width=0.7) # 6等级 plt.plot([0, 24], [air_ave, air_ave], c='black', linestyle='--') # 画出平均空气质量虚线 plt.text(air_max_hour + 0.15, air_max + 0.15, str(air_max), ha='center', va='bottom', fontsize=10.5) # 标出最高空气质量 plt.text(air_min_hour + 0.15, air_min + 0.15, str(air_min), ha='center', va='bottom', fontsize=10.5) # 标出最低空气质量 plt.xticks(x) plt.title('一天空气质量变化曲线图') plt.xlabel('时间/h') plt.ylabel('空气质量指数AQI') plt.show() def wind_radar(data): """风向雷达图""" wind = list(data['风力方向']) wind_speed = list(data['风级']) for i in range(0, 24): if wind[i] == "北风": wind[i] = 90 elif wind[i] == "南风": wind[i] = 270 elif wind[i] == "西风": wind[i] = 180 elif wind[i] == "东风": wind[i] = 360 elif wind[i] == "东北风": wind[i] = 45 elif wind[i] == "西北风": wind[i] = 135 elif wind[i] == "西南风": wind[i] = 225 elif wind[i] == "东南风": wind[i] = 315 degs = np.arange(45, 361, 45) temp = [] for deg in degs: speed = [] # 获取 wind_deg 在指定范围的风速平均值数据 for i in range(0, 24): if wind[i] == deg: speed.append(wind_speed[i]) if len(speed) == 0: temp.append(0) else: temp.append(sum(speed) / len(speed)) print(temp) N = 8 theta = np.arange(0. + np.pi / 8, 2 * np.pi + np.pi / 8, 2 * np.pi / 8) # 数据极径 radii = np.array(temp) # 绘制极区图坐标系 plt.axes(polar=True) # 定义每个扇区的RGB值(R,G,B),x越大,对应的颜色越接近蓝色 colors = [(1 - x / max(temp), 1 - x / max(temp), 0.6) for x in radii] plt.bar(theta, radii, width=(2 * np.pi / N), bottom=0.0, color=colors) plt.title('一天风级图', x=0.2, fontsize=20) plt.show() def calc_corr(a, b): """计算相关系数""" a_avg = sum(a) / len(a) b_avg = sum(b) / len(b) cov_ab = sum([(x - a_avg) * (y - b_avg) for x, y in zip(a, b)]) sq = math.sqrt(sum([(x - a_avg) ** 2 for x in a]) * sum([(x - b_avg) ** 2 for x in b])) corr_factor = cov_ab / sq return corr_factor def corr_tem_hum(data): """温湿度相关性分析""" tem = data['温度'] hum = data['相对湿度'] plt.scatter(tem, hum, color='blue') plt.title("温湿度相关性分析图") plt.xlabel("温度/℃") plt.ylabel("相对湿度/%") plt.text(20, 40, "相关系数为:" + str(calc_corr(tem, hum)), fontdict={'size': '10', 'color': 'red'}) plt.show() print("相关系数为:" + str(calc_corr(tem, hum))) def main(): plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文显示问题 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 data1 = pd.read_csv('C:\\Users\\杨官瑜\\PycharmProjects\\pythonProject5\\weather1.csv', encoding='gb2312') print(data1) tem_curve(data1) hum_curve(data1) air_curve(data1) wind_radar(data1) corr_tem_hum(data1) if __name__ == '__main__': main()