import pandas import requests #发送请求 import pandas as pd import numpy as np#导入matplotlib库,绘制图像 import matplotlib.pyplot as plt#读取数据集到phone_data中 import seaborn as sns import jieba from collections import Counter from wordcloud import WordCloud url_dict = { '全站': 'https://api.bilibili.com/x/web-interface/ranking/v2?rid=0&type=all', '音乐': 'https://api.bilibili.com/x/web-interface/ranking/v2?rid=3&type=all', '舞蹈': 'https://api.bilibili.com/x/web-interface/ranking/v2?rid=129&type=all', '生活': 'https://api.bilibili.com/x/web-interface/ranking/v2?rid=160&type=all', '美食': 'https://api.bilibili.com/x/web-interface/ranking/v2?rid=211&type=all', } headers = { "upgrade-insecure-requests": "1", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:125.0) Gecko/20100101 Firefox/125.0", "Referer": "https://www.bilibili.com/v/popular/rank/all/", } for i in url_dict.items(): url = i[1] # url地址 tab_name = i[0] # tab页名称 title_list = [] play_cnt_list = [] # 播放数 danmu_cnt_list = [] # 弹幕数 coin_cnt_list = [] # 投币数 like_cnt_list = [] # 点赞数 share_cnt_list = [] # 分享数 favorite_cnt_list = [] # 收藏数 author_list = [] video_url = [] try: r = requests.get(url, headers=headers) print(r.status_code)#获取目标数据所在数据并转成字典类型 json_data = r.json() list_data = json_data['data']['list'] for data in list_data: title_list.append(data['title']) play_cnt_list.append(data['stat']['view']) danmu_cnt_list.append(data['stat']['danmaku']) coin_cnt_list.append(data['stat']['coin']) like_cnt_list.append(data['stat']['like']) # dislike_cnt_list.append(data['stat']['dislike']) share_cnt_list.append(data['stat']['share']) favorite_cnt_list.append(data['stat']['favorite']) author_list.append(data['owner']['name']) # score_list.append(data['score']) video_url.append('https://www.bilibili.com/video/' + data['bvid']) # print('*' * 10) except Exception as e: print("爬取失败:{}".format(str(e))) #创建dataframe保存数据 df = pd.DataFrame( {'视频标题': title_list, '视频地址': video_url, '作者': author_list, '播放数': play_cnt_list, '弹幕数': danmu_cnt_list, '投币数': coin_cnt_list, '点赞数': like_cnt_list, '分享数': share_cnt_list, '收藏数': favorite_cnt_list, }) #print(df.head()) #将数据保存到本地 df.to_csv('B站TOP100-{}.csv'.format(tab_name), index=False,encoding='utf_8_sig') # utf_8_sig修复乱码问题 print('写入成功: ' + 'B站TOP100-{}.csv'.format(tab_name)) data_meishi=pd.read_csv('B站TOP100-美食.csv') data_quanzhan=pd.read_csv('B站TOP100-全站.csv') data_shenghuo=pd.read_csv('B站TOP100-生活.csv') data_wudao=pd.read_csv('B站TOP100-舞蹈.csv') data_yinyue=pd.read_csv('B站TOP100-音乐.csv') plt.rcParams['font.family'] = 'SimHei' #弹幕数与播放数的散点图 plt.figure(figsize=(8, 6)) # 调整图像大小:确认图像没有被显示在可视区域外,尝试设置图像的大小利用plt.figure(figsize=(,)) sns.scatterplot(x='弹幕数', y='播放数', data=data_quanzhan) plt.show() # 调用 plt.show()显示结果 numeric_data = data_quanzhan.select_dtypes(include=['number']) cor = numeric_data.corr(method='spearman') sns.heatmap(cor, annot=True, # 显示相关系数的数据 center=0.5, # 居中 fmt='.2f', # 只显示两位小数 linewidth=0.5, # 设置每个单元格的距离 linecolor='blue', # 设置间距线的颜色 vmin=0, vmax=1, # 设置数值最小值和最大值 xticklabels=True, yticklabels=True, # 显示x轴和y轴 square=True, # 每个方格都是正方形 cbar=True, # 绘制颜色条 cmap='coolwarm_r', # 设置热力图颜色 ) plt.show() #显示图片 mean_list = [data_quanzhan['播放数'].mean(),data_wudao['播放数'].mean(),data_shenghuo['播放数'].mean(),data_meishi['播放数'].mean(),data_yinyue['播放数'].mean()] name_list=['全站','舞蹈','生活','美食','音乐'] plt.bar(name_list,mean_list) plt.ylabel('播放数') plt.show() var_list = [data_quanzhan['播放数'].var(),data_wudao['播放数'].var(),data_shenghuo['播放数'].var(),data_meishi['播放数'].var(),data_yinyue['播放数'].var()] plt.bar(name_list,var_list) plt.ylabel('播放数方差') # 文本预处理 data_quanzhan['视频标题'] = data_quanzhan['视频标题'].apply(lambda x: ' '.join(jieba.lcut(x))) # 分词 # 读取停用词 with open('./停用词表.txt', 'r', encoding='utf-8') as f: stop_words = f.read().split('\n') data_quanzhan['视频标题'] = data_quanzhan['视频标题'].apply(lambda x: ' '.join([word for word in x.split() if word not in stop_words])) # 去除停用词 # 统计单词出现频率 words = [] for comment in data_quanzhan['视频标题']: words += comment.split() word_count = Counter(words).most_common(100) # 转成字典 dct = {k:v for k, v in word_count} print(dct) # 生成词云图 font_path = r'C:\Windows\Fonts\msyh.ttc' # 指定微软雅黑字体路径 wordcloud = WordCloud(width=800, height=600, background_color='white',font_path=font_path).generate_from_frequencies(dct) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.show() def panduan(x): if x in data_meishi['作者'].tolist(): return '美食' elif x in data_shenghuo['作者'].tolist(): return '生活' elif x in data_yinyue['作者'].tolist(): return '音乐' elif x in data_wudao['作者'].tolist(): return '舞蹈' else: return '其他' data_quanzhan['类别'] = data_quanzhan['作者'].apply(panduan) data_pie = data_quanzhan['类别'].value_counts() plt.pie(data_pie.values,labels=data_pie.index,autopct="%3.1f%%") plt.show()