diff --git a/djangoProject b/djangoProject new file mode 100644 index 0000000..41d7671 --- /dev/null +++ b/djangoProject @@ -0,0 +1,176 @@ +import cv2 +import numpy as np +import math + + +# RGB色彩空间 +def Rgb(path): + img = cv2.imread(path, 1) + b = img[:, :, 0] + g = img[:, :, 1] + r = img[:, :, 2] + cv2.imwrite('./media/RGB/b.jpg', b) + cv2.imwrite('./media/RGB/g.jpg', g) + cv2.imwrite('./media/RGB/r.jpg', r) + + +# HSV色彩空间 +def Hsv(path): + img = cv2.imread(path, 1) + hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) + h = hsv[:, :, 0] + s = hsv[:, :, 1] + v = hsv[:, :, 2] + cv2.imwrite("./media/HSV/h.jpg", h) + cv2.imwrite("./media/HSV/s.jpg", s) + cv2.imwrite("./media/HSV/v.jpg", v) + + +def Un(path): + img = cv2.imread(path, 0) + result = ~img + cv2.imwrite("./media/UN/un.jpg", result) + + +def Add(paths): + # 只做了两个图像叠加,多个怎么做 + img1 = cv2.imread(paths[0], 1) + img2 = cv2.imread(paths[1], 1) + img = cv2.add(img1, img2) + cv2.imwrite("./media/ADD/add.jpg", img) + + +def Subtract(paths): + img1 = cv2.imread(paths[0], 1) + img2 = cv2.imread(paths[1], 1) + img = cv2.subtract(img1, img2) + cv2.imwrite("./media/SUBTRACT/subtract.jpg", img) + + +# 形态学操作 +def OpenAndClose(path): + # 二值转换 + img = cv2.imread(path, 1) + gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + retval, src = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) + # 定义十字形结构元素 + kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (10, 10), (-1, -1)) + # 对二值图进行开运算和闭运算操作 + im_op = cv2.morphologyEx(src, cv2.MORPH_OPEN, kernel) + im_cl = cv2.morphologyEx(src, cv2.MORPH_CLOSE, kernel) + cv2.imwrite('./media/OPANDCL/op.png', im_op) + cv2.imwrite('./media/OPANDCL/cl.png', im_cl) + + +# 边缘检测和图像增强 +def Sharp(path): + CRH = cv2.imread(path, 1) + gradient = np.zeros_like(CRH) + CRH = CRH.astype('float') + h, w = CRH.shape[:2] + for x in range(h - 1): + for y in range(w - 1): + gx = abs(CRH[x + 1, y] - CRH[x, y]) + gy = abs(CRH[x, y + 1] - CRH[x, y]) + gradient[x, y] = gx + gy + sharp = CRH + gradient + + sharp = np.where(sharp > 255, 255, sharp) + sharp = np.where(sharp < 0, 0, sharp) + gradient = gradient.astype('uint8') + sharp = sharp.astype('uint8') + cv2.imwrite('./media/SHARP/gradient.png', gradient) + cv2.imwrite('./media/SHARP/sharp.png', sharp) + + +# 镜像 +def Turn(path): + img = cv2.imread(path) + # 水平镜像 + horizontal = cv2.flip(img, 1, dst=None) + # 垂直镜像 + vertical = cv2.flip(img, 0, dst=None) + # 对角镜像 + cross = cv2.flip(img, -1, dst=None) + cv2.imwrite("./media/TURN/horizontal.jpg", horizontal) + cv2.imwrite("./media/TURN/vertical.jpg", vertical) + cv2.imwrite("./media/TURN/cross.jpg", cross) + + +# 腐蚀 +def Erosion(path): + src = cv2.imread(path, cv2.IMREAD_UNCHANGED) + # 10x10的交叉型结构元 + kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (10, 10), (-1, -1)) + erosion = cv2.erode(src, kernel) + cv2.imwrite("./media/EROSION/erosion.jpg", erosion) + + +# 膨胀 +def Dilation(path): + src = cv2.imread(path, cv2.IMREAD_UNCHANGED) + # 10x10的交叉结构元 + kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (10, 10), (-1, -1)) + dilation = cv2.dilate(src, kernel) + cv2.imwrite("./media/DILATION/dilation.png", dilation) + + +# 噪声及滤波 +def Noise(path): + image = cv2.imread(path, cv2.IMREAD_GRAYSCALE) + output = np.zeros(image.shape, np.uint8) + output2 = np.zeros(image.shape, np.uint8) + # 叠加噪声 + for i in range(image.shape[0]): + for j in range(image.shape[1]): + if image[i][j] < 40: + # 添加食盐噪声 + output[i][j] = 255 + elif image[i][j] > 200: + # 添加胡椒噪声 + output[i][j] = 0 + # 不添加噪声 + else: + output[i][j] = image[i][j] + + # 均值滤波 + for i in range(output.shape[0]): + for j in range(output.shape[1]): + ji = 1.0 + for n in range(-1, 2): + if 0 <= i < output.shape[0] and 0 <= j + n < output.shape[1]: + ji = ji * output[i][j + n] + output2[i][j] = int(ji ** (1 / 3)) + + cv2.imwrite("./media/NOISE/noise.jpg", output) + cv2.imwrite("./media/NOISE/meanFilter.jpg", output2) + +# # 扩展平移缩放 +# def moveandchange(path): +# img = cv2.imread(path, 1) +# l, w, h = img.shape +# # 扩展,使用双线性插值法 +# img = cv2.resize(img, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_LINEAR) +# height, width, channel = img.shape +# # 移动 +# M = np.float32([[1, 0, 30], [0, 1, 60]]) +# img = cv2.warpAffine(img, M, (width, height)) +# # 旋转 +# rows, cols, depth = img.shape +# M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45, 1) +# dst = cv2.warpAffine(img, M, (width, height)) +# +# cv2.imwrite('./media/CHANGE/out.png', dst) + + +# # 仿射变换 +# def affine(path): +# img = cv2.imread(path) +# rows, cols = img.shape[: 2] +# # 设置图像仿射变化矩阵 +# post1 = np.float32([[50, 50], [200, 50], [50, 200]]) +# post2 = np.float32([[10, 100], [200, 50], [100, 250]]) +# M = cv2.getAffineTransform(post1, post2) +# # 图像仿射变换 +# result = cv2.warpAffine(img, M, (rows, cols)) +# cv2.imwrite("./media/AFFINE/affine.jpg", result)