#ifndef _BLK_H #define _BLK_H #define NR_BLK_DEV 7 /* * NR_REQUEST is the number of entries in the request-queue. * NOTE that writes may use only the low 2/3 of these: reads * take precedence. * * 32 seems to be a reasonable number: enough to get some benefit * from the elevator-mechanism, but not so much as to lock a lot of * buffers when they are in the queue. 64 seems to be too many (easily * long pauses in reading when heavy writing/syncing is going on) */ #define NR_REQUEST 32 /* * Ok, this is an expanded form so that we can use the same * request for paging requests when that is implemented. In * paging, 'bh' is NULL, and 'waiting' is used to wait for * read/write completion. */ struct request { int dev; /* -1 if no request */ int cmd; /* READ or WRITE */ int errors; unsigned long sector; unsigned long nr_sectors; char * buffer; struct task_struct * waiting; struct buffer_head * bh; struct request * next; }; /* * This is used in the elevator algorithm: Note that * reads always go before writes. This is natural: reads * are much more time-critical than writes. */ #define IN_ORDER(s1,s2) \ ((s1)->cmd<(s2)->cmd || (s1)->cmd==(s2)->cmd && \ ((s1)->dev < (s2)->dev || ((s1)->dev == (s2)->dev && \ (s1)->sector < (s2)->sector))) struct blk_dev_struct { void (*request_fn)(void); struct request * current_request; }; extern struct blk_dev_struct blk_dev[NR_BLK_DEV]; extern struct request request[NR_REQUEST]; extern struct task_struct * wait_for_request; #ifdef MAJOR_NR /* * Add entries as needed. Currently the only block devices * supported are hard-disks and floppies. */ #if (MAJOR_NR == 1) /* ram disk */ #define DEVICE_NAME "ramdisk" #define DEVICE_REQUEST do_rd_request #define DEVICE_NR(device) ((device) & 7) #define DEVICE_ON(device) #define DEVICE_OFF(device) #elif (MAJOR_NR == 2) /* floppy */ #define DEVICE_NAME "floppy" #define DEVICE_INTR do_floppy #define DEVICE_REQUEST do_fd_request #define DEVICE_NR(device) ((device) & 3) #define DEVICE_ON(device) floppy_on(DEVICE_NR(device)) #define DEVICE_OFF(device) floppy_off(DEVICE_NR(device)) #elif (MAJOR_NR == 3) /* harddisk */ #define DEVICE_NAME "harddisk" #define DEVICE_INTR do_hd #define DEVICE_REQUEST do_hd_request #define DEVICE_NR(device) (MINOR(device)/5) #define DEVICE_ON(device) #define DEVICE_OFF(device) #elif (MAJOR_NR > 3) /* unknown blk device */ #error "unknown blk device" #endif #define CURRENT (blk_dev[MAJOR_NR].current_request) #define CURRENT_DEV DEVICE_NR(CURRENT->dev) #ifdef DEVICE_INTR void (*DEVICE_INTR)(void) = NULL; #endif static void (DEVICE_REQUEST)(void); static inline void unlock_buffer(struct buffer_head * bh) { if (!bh->b_lock) printk(DEVICE_NAME ": free buffer being unlocked\n"); bh->b_lock=0; wake_up(&bh->b_wait); } static inline void end_request(int uptodate) { DEVICE_OFF(CURRENT->dev); if (CURRENT->bh) { CURRENT->bh->b_uptodate = uptodate; unlock_buffer(CURRENT->bh); } if (!uptodate) { printk(DEVICE_NAME " I/O error\n\r"); printk("dev %04x, block %d\n\r",CURRENT->dev, CURRENT->bh->b_blocknr); } wake_up(&CURRENT->waiting); wake_up(&wait_for_request); CURRENT->dev = -1; CURRENT = CURRENT->next; } #define INIT_REQUEST \ repeat: \ if (!CURRENT) \ return; \ if (MAJOR(CURRENT->dev) != MAJOR_NR) \ panic(DEVICE_NAME ": request list destroyed"); \ if (CURRENT->bh) { \ if (!CURRENT->bh->b_lock) \ panic(DEVICE_NAME ": block not locked"); \ } #endif #endif