You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
4.7 KiB

import cv2
import os
import numpy as np
import pytesseract
def locate_license_plate(image_path):
if not os.path.isfile(image_path):
print(f"Error: File '{image_path}' does not exist.")
return None
"""
根据输入的图像路径定位蓝色车牌并返回裁剪出的车牌区域
"""
# 读取图像
car = cv2.imread(image_path, 1)
if car is None:
print(f"Error: Unable to read image '{image_path}'")
return None
# 定义蓝色所对应的色彩空间范围
lower_blue = np.array([100, 110, 110])
upper_blue = np.array([130, 255, 255])
# 将图像转换到HSV颜色空间
hsv = cv2.cvtColor(car, cv2.COLOR_BGR2HSV)
# 获取蓝色区域的掩模
mask_blue = cv2.inRange(hsv, lower_blue, upper_blue)
# 将掩模转换为灰度图像
mask = mask_blue
# 形态学处理,开运算和闭运算
matrix = np.ones((20, 20), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, matrix)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, matrix)
# 二值化
ret, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 寻找最大轮廓并定位车牌
max_area = 0
best_contour = None
for contour in contours:
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
best_contour = contour
# 获取定位车牌的外接矩形框
rect = cv2.minAreaRect(best_contour)
box = cv2.boxPoints(rect)
box = np.int32(box)
# 获取旋转矩阵
angle = rect[2]
flag = 0
print(angle)
if angle < -45:
angle += 90
flag = 1
if angle > 45:
angle -= 90
flag = 1
print(angle)
center = (rect[0][0], rect[0][1])
size = (int(rect[1][0]), int(rect[1][1]))
M = cv2.getRotationMatrix2D(center, angle, 1.0)
# 旋转图像
height, width = car.shape[:2]
rotated = cv2.warpAffine(car, M, (width, height))
# 获取旋转后矩形框的坐标
if flag == 0:
box = cv2.boxPoints(((center[0], center[1]), (size[0], size[1]), 0.0))
box = np.int32(box)
# 裁剪车牌区域
xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]]
ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]]
x1, x2 = min(xs), max(xs)
y1, y2 = min(ys), max(ys)
ROI_plate = rotated[y1:y2, x1:x2]
return ROI_plate
def preprocess_image_for_ocr(image):
"""
预处理图像以提高 OCR 识别率
"""
# # 去除左右上下各3个像素的边框
height, width = image.shape[:2]
image = image[3:height - 3, 3:width - 3]
# 调整图像大小到 165x40
image = cv2.resize(image, (165, 40), interpolation=cv2.INTER_AREA)
# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 去噪
denoised = cv2.medianBlur(binary, 3)
return denoised
def find_split_line(image):
"""
在宽度15-30像素之间查找分割线
"""
height, width = image.shape
column_sums = np.sum(image[3:height - 3, 15:30], axis=0) # 忽略顶部和底部的像素
zero_columns = np.where(column_sums == 0)[0] # 找到像素和为0的列
if len(zero_columns) == 0:
# 如果没有找到和为0的列返回默认分割线为22
split_line = 22
else:
# 计算零列的中值作为分割线
split_line = int(np.median(zero_columns)) + 15 # 加上偏移量15
print(split_line)
return split_line
def recognize_characters(image):
"""
使用OCR技术识别车牌上的字符
"""
preprocessed_image = preprocess_image_for_ocr(image)
# 找到分割线
split_line = find_split_line(preprocessed_image)
# 切割图像为两部分
part1 = preprocessed_image[:, :split_line] # 宽度0-split_line部分
part2 = preprocessed_image[:, split_line:] # 剩余部分
# 调用 Tesseract OCR 识别第一部分
custom_config_chi_sim = r'--oem 3 --psm 6 -l chi_sim'
result_chi_sim = pytesseract.image_to_string(part1, config=custom_config_chi_sim)
# 调用 Tesseract OCR 识别第二部分
custom_config_default = r'--oem 3 --psm 6'
result_default = pytesseract.image_to_string(part2, config=custom_config_default)
# 合并两个部分的识别结果
recognized_characters = result_chi_sim.strip() + result_default.strip()
return recognized_characters