diff --git a/advanced/track/animal_track.py b/advanced/track/animal_track.py deleted file mode 100644 index 1c92d19..0000000 --- a/advanced/track/animal_track.py +++ /dev/null @@ -1,149 +0,0 @@ -import tkinter as tk -from tkinter import filedialog -import numpy as np -import cv2 -import os -import time - -# 获取当前脚本文件的目录 -base_path = os.path.dirname(os.path.abspath(__file__)) - -def select_file_and_run(): - file_path = filedialog.askopenfilename(filetypes=[("Video files", "*.mp4;*.avi")]) - if file_path: - run_detection_and_tracking(file_path) - -def run_detection_and_tracking(file_path): - # 加载YOLO模型 - model_path1 = os.path.join(base_path, 'yolo/yolov3.weights') - model_path2 = os.path.join(base_path, 'yolo/yolov3.cfg') - model_path3 = os.path.join(base_path, 'yolo/coco.names') - net = cv2.dnn.readNet(model_path1, model_path2) - layer_names = net.getLayerNames() - output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()] - classes = [] - with open(model_path3, "r") as f: - classes = [line.strip() for line in f.readlines()] - - # 初始化视频捕捉 - cap = cv2.VideoCapture(file_path) - fps = cap.get(cv2.CAP_PROP_FPS) - speed_up_factor = 2 # 加速倍数 - delay = int(1000 / fps / speed_up_factor) # 计算加速后每帧之间的时间间隔,以毫秒为单位 - - # 创建多目标追踪器 - trackers = [] - - # 创建用于存储已追踪对象信息的列表 - tracked_objects = [] - - while True: - ret, frame = cap.read() - if not ret: - break - - start_time = time.time() - - # 检测目标 - height, width, channels = frame.shape - blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False) - net.setInput(blob) - outs = net.forward(output_layers) - - # 获取检测结果 - new_objects = [] # 用于存储当前帧检测到的新对象 - - class_ids = [] - confidences = [] - boxes = [] - for out in outs: - for detection in out: - scores = detection[5:] - class_id = np.argmax(scores) - confidence = scores[class_id] - if confidence > 0.5: - # 目标检测 - center_x = int(detection[0] * width) - center_y = int(detection[1] * height) - w = int(detection[2] * width) - h = int(detection[3] * height) - x = int(center_x - w / 2) - y = int(center_y - h / 2) - boxes.append([x, y, w, h]) - confidences.append(float(confidence)) - class_ids.append(class_id) - new_objects.append((x, y, w, h, class_id)) # 存储新检测到的对象信息 - - # 非最大值抑制 - indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) - - # 更新追踪器或添加新的追踪器 - for i in indices.flatten(): - x, y, w, h = boxes[i] - label = str(classes[class_ids[i]]) - if label in ["dog", "cat", "bird"]: # 只选择动物目标 - # 检查是否已经有相似的追踪器在追踪相同类型的对象 - found_similar = False - for tracked_object in tracked_objects: - if tracked_object[4] == class_ids[i]: # 检查类别是否相同 - # 计算当前检测到的对象与已有追踪器的距离或重叠度 - existing_bbox = (tracked_object[0], tracked_object[1], tracked_object[0] + tracked_object[2], - tracked_object[1] + tracked_object[3]) - new_bbox = (x, y, x + w, y + h) - overlap_area = calculate_overlap(existing_bbox, new_bbox) - if overlap_area > 0.5: # 如果重叠度超过阈值,认为是同一个对象,不再重复追踪 - found_similar = True - break - if not found_similar: - tracker = cv2.TrackerKCF_create() - trackers.append(tracker) - trackers[-1].init(frame, (x, y, w, h)) - tracked_objects.append((x, y, w, h, class_ids[i])) # 添加到已追踪对象列表 - - # 绘制追踪框 - for tracker in trackers: - success, bbox = tracker.update(frame) - if success: - # 画出追踪框 - p1 = (int(bbox[0]), int(bbox[1])) - p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) - cv2.rectangle(frame, p1, p2, (255, 0, 0), 2) - else: - # 追踪失败 - cv2.putText(frame, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), - 2) - - # 显示结果 - cv2.imshow('Tracking', frame) - - # 按下ESC键退出或关闭窗口退出 - if cv2.waitKey(delay) & 0xFF == 27: - break - if cv2.getWindowProperty('Tracking', cv2.WND_PROP_VISIBLE) < 1: - break - - cap.release() - cv2.destroyAllWindows() - - -def calculate_overlap(bbox1, bbox2): - # bbox1 和 bbox2 分别是 (x1, y1, x2, y2) 格式的边界框坐标 - # 其中 (x1, y1) 是左上角坐标,(x2, y2) 是右下角坐标 - - # 计算交集部分的坐标 - inter_x1 = max(bbox1[0], bbox2[0]) - inter_y1 = max(bbox1[1], bbox2[1]) - inter_x2 = min(bbox1[2], bbox2[2]) - inter_y2 = min(bbox1[3], bbox2[3]) - - # 计算交集区域的面积 - inter_area = max(0, inter_x2 - inter_x1 + 1) * max(0, inter_y2 - inter_y1 + 1) - - # 计算各自的区域面积 - area_bbox1 = (bbox1[2] - bbox1[0] + 1) * (bbox1[3] - bbox1[1] + 1) - area_bbox2 = (bbox2[2] - bbox2[0] + 1) * (bbox2[3] - bbox2[1] + 1) - - # 计算并返回重叠区域的IoU - iou = inter_area / float(area_bbox1 + area_bbox2 - inter_area) - - return iou