parent
4dc8b82e85
commit
6570ee0239
@ -1,333 +1,320 @@
|
||||
import tkinter as tk
|
||||
from tkinter import filedialog, messagebox
|
||||
from tkinter import Toplevel
|
||||
from PIL import Image, ImageTk
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
|
||||
# 全局变量
|
||||
img_path = "" # 用于存储图像路径
|
||||
src = None # 用于存储已选择的图像
|
||||
X = None # 用于存储第一张图像
|
||||
Y = None # 用于存储第二张图像
|
||||
img_label = None # 用于存储显示选择的图片的标签
|
||||
edge = None # 用于存储处理后的图像
|
||||
|
||||
ThreWin = None # 用于阈值化处理结果窗口
|
||||
VergeWin = None # 用于边缘检测结果窗口
|
||||
LineWin = None # 用于线条变化检测结果窗口
|
||||
|
||||
def select_image(root):
|
||||
"""
|
||||
选择图像文件并显示在主窗口中
|
||||
"""
|
||||
global img_path, src, img_label, edge
|
||||
|
||||
# 弹出文件选择对话框,选择图像文件
|
||||
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
|
||||
if img_path:
|
||||
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
|
||||
img_path_fixed = os.path.normpath(img_path)
|
||||
|
||||
# 使用 cv2.imdecode 加载图像,处理中文路径
|
||||
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
|
||||
if src_temp is None:
|
||||
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
|
||||
return
|
||||
# 将图像从 BGR 转换为 RGB
|
||||
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# 检查 img_label 是否存在且有效,如果不存在则创建新的 Label
|
||||
if img_label is None or not img_label.winfo_exists():
|
||||
img_label = tk.Label(root)
|
||||
img_label.pack(side=tk.TOP, pady=10)
|
||||
|
||||
# 使用 PIL 加载并缩放图像以适应标签大小
|
||||
img = Image.open(img_path)
|
||||
img.thumbnail((160, 160))
|
||||
img_tk = ImageTk.PhotoImage(img)
|
||||
img_label.configure(image=img_tk)
|
||||
img_label.image = img_tk
|
||||
|
||||
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
|
||||
edge = Image.fromarray(src)
|
||||
else:
|
||||
messagebox.showerror("错误", "没有选择图片路径")
|
||||
|
||||
def show_selected_image(root):
|
||||
"""
|
||||
显示已选择的图像
|
||||
"""
|
||||
global img_label
|
||||
img_label = tk.Label(root)
|
||||
img_label.pack(side=tk.TOP, pady=10)
|
||||
img = Image.open(img_path)
|
||||
img.thumbnail((160, 160))
|
||||
img_tk = ImageTk.PhotoImage(img)
|
||||
img_label.configure(image=img_tk)
|
||||
img_label.image = img_tk
|
||||
|
||||
def changeSize(event, img, LabelPic):
|
||||
"""
|
||||
动态调整图像大小以适应窗口大小
|
||||
"""
|
||||
img_aspect = img.shape[1] / img.shape[0] # 计算图像宽高比
|
||||
new_aspect = event.width / event.height # 计算新窗口的宽高比
|
||||
|
||||
# 根据宽高比调整图像大小
|
||||
if new_aspect > img_aspect:
|
||||
new_width = int(event.height * img_aspect)
|
||||
new_height = event.height
|
||||
else:
|
||||
new_width = event.width
|
||||
new_height = int(event.width / img_aspect)
|
||||
|
||||
# 调整图像大小并更新显示
|
||||
resized_image = cv2.resize(img, (new_width, new_height))
|
||||
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
|
||||
LabelPic.image = image1
|
||||
LabelPic['image'] = image1
|
||||
|
||||
def savefile():
|
||||
"""
|
||||
保存处理后的图像
|
||||
"""
|
||||
global edge
|
||||
|
||||
# 弹出文件保存对话框
|
||||
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
|
||||
if not filename:
|
||||
return
|
||||
# 确保 edge 变量已定义
|
||||
if edge is not None:
|
||||
try:
|
||||
edge.save(filename)
|
||||
messagebox.showinfo("保存成功", "图片保存成功!")
|
||||
except Exception as e:
|
||||
messagebox.showerror("保存失败", f"无法保存图片: {e}")
|
||||
else:
|
||||
messagebox.showerror("保存失败", "没有图像可保存")
|
||||
|
||||
def threshold(root):
|
||||
"""
|
||||
对图像进行阈值化处理并显示结果
|
||||
"""
|
||||
global src, ThreWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 转变图像为灰度图
|
||||
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# TRIANGLE 自适应阈值
|
||||
ret, TRIANGLE_img = cv2.threshold(gray, 0, 255, cv2.THRESH_TRIANGLE)
|
||||
# OTSU 自适应阈值
|
||||
ret, OTSU_img = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
|
||||
# TRUNC 截断阈值(200)
|
||||
ret, TRUNC_img = cv2.threshold(gray, 200, 255, cv2.THRESH_TRUNC)
|
||||
# TOZERO 归零阈值(100)
|
||||
ret, TOZERO__img = cv2.threshold(gray, 100, 255, cv2.THRESH_TOZERO)
|
||||
|
||||
# 将处理后的图像拼接在一起
|
||||
combined = np.hstack((TRIANGLE_img, OTSU_img, TRUNC_img, TOZERO__img))
|
||||
|
||||
# 更新 edge 变量
|
||||
edge = Image.fromarray(combined)
|
||||
|
||||
# 创建 Toplevel 窗口用于显示处理结果
|
||||
try:
|
||||
ThreWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
ThreWin = Toplevel()
|
||||
ThreWin.attributes('-topmost', True)
|
||||
ThreWin.geometry("720x300")
|
||||
ThreWin.resizable(True, True) # 可缩放
|
||||
ThreWin.title("阈值化结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(ThreWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(ThreWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
|
||||
def verge(root):
|
||||
"""
|
||||
对图像进行边缘检测并显示结果
|
||||
"""
|
||||
global src, VergeWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 转变图像为灰度图
|
||||
grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# 1. Roberts 算子
|
||||
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
|
||||
kernely = np.array([[0, -1], [1, 0]], dtype=int)
|
||||
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
|
||||
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
|
||||
absX = cv2.convertScaleAbs(x)
|
||||
absY = cv2.convertScaleAbs(y)
|
||||
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
||||
|
||||
# 2. Sobel 算子
|
||||
x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0)
|
||||
y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1)
|
||||
absX = cv2.convertScaleAbs(x)
|
||||
absY = cv2.convertScaleAbs(y)
|
||||
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
||||
|
||||
# 3. 拉普拉斯算法 & 高斯滤波
|
||||
gray = cv2.GaussianBlur(grayImage, (5, 5), 0, 0)
|
||||
dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
|
||||
Laplacian = cv2.convertScaleAbs(dst)
|
||||
|
||||
# 4. LoG 边缘算子 & 边缘扩充 & 高斯滤波
|
||||
gray = cv2.copyMakeBorder(grayImage, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE)
|
||||
image = cv2.GaussianBlur(gray, (3, 3), 0, 0)
|
||||
#使用Numpy定义LoG算子
|
||||
m1 = np.array(
|
||||
[[0, 0, -1, 0, 0], [0, -1, -2, -1, 0], [-1, -2, 16, -2, -1], [0, -1, -2, -1, 0], [0, 0, -1, 0, 0]])
|
||||
image1 = np.zeros(image.shape)
|
||||
rows = image.shape[0]
|
||||
cols = image.shape[1]
|
||||
for i in range(2, rows - 2):
|
||||
for j in range(2, cols - 2):
|
||||
image1[i, j] = np.sum((m1 * image[i - 2:i + 3, j - 2:j + 3]))
|
||||
|
||||
Log = cv2.convertScaleAbs(image1)
|
||||
|
||||
# 5. Canny 边缘检测
|
||||
image = cv2.GaussianBlur(grayImage, (3, 3), 0)
|
||||
gradx = cv2.Sobel(image, cv2.CV_16SC1, 1, 0)
|
||||
grady = cv2.Sobel(image, cv2.CV_16SC1, 0, 1)
|
||||
edge_output = cv2.Canny(gradx, grady, 50, 150)
|
||||
|
||||
# 调整大小以匹配原始图像大小
|
||||
Roberts = cv2.resize(Roberts, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Sobel = cv2.resize(Sobel, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Laplacian = cv2.resize(Laplacian, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Log = cv2.resize(Log, (grayImage.shape[1], grayImage.shape[0]))
|
||||
edge_output = cv2.resize(edge_output, (grayImage.shape[1], grayImage.shape[0]))
|
||||
|
||||
# 将结果水平堆叠在一起
|
||||
combined = np.hstack((Roberts, Sobel, Laplacian, Log, edge_output))
|
||||
|
||||
# 更新 edge 变量为 PIL.Image 对象
|
||||
edge = Image.fromarray(combined)
|
||||
|
||||
# 创建 Toplevel 窗口显示边缘检测结果
|
||||
try:
|
||||
VergeWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
VergeWin = Toplevel()
|
||||
VergeWin.attributes('-topmost', True)
|
||||
VergeWin.geometry("720x300")
|
||||
VergeWin.resizable(True, True) # 可缩放
|
||||
VergeWin.title("边缘检测结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(VergeWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(VergeWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
|
||||
|
||||
def line_chan(root):
|
||||
"""
|
||||
检测图像中的线条变化并显示结果
|
||||
"""
|
||||
global src, LineWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 使用高斯模糊和 Canny 边缘检测处理图像
|
||||
img = cv2.GaussianBlur(src, (3, 3), 0)
|
||||
edges = cv2.Canny(img, 50, 150, apertureSize=3)
|
||||
|
||||
# 使用 HoughLines 算法检测直线
|
||||
lines = cv2.HoughLines(edges, 1, np.pi / 2, 118)
|
||||
result = img.copy()
|
||||
for i_line in lines:
|
||||
for line in i_line:
|
||||
rho = line[0]
|
||||
theta = line[1]
|
||||
if (theta < (np.pi / 4.)) or (theta > (3. * np.pi / 4.0)): # 垂直直线
|
||||
pt1 = (int(rho / np.cos(theta)), 0)
|
||||
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
|
||||
cv2.line(result, pt1, pt2, (0, 0, 255))
|
||||
else:
|
||||
pt1 = (0, int(rho / np.sin(theta)))
|
||||
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
|
||||
cv2.line(result, pt1, pt2, (0, 0, 255), 1)
|
||||
|
||||
# 使用 HoughLinesP 算法检测直线段
|
||||
minLineLength = 200
|
||||
maxLineGap = 15
|
||||
linesP = cv2.HoughLinesP(edges, 1, np.pi / 180, 80, minLineLength, maxLineGap)
|
||||
result_P = img.copy()
|
||||
for i_P in linesP:
|
||||
for x1, y1, x2, y2 in i_P:
|
||||
cv2.line(result_P, (x1, y1), (x2, y2), (0, 255, 0), 3)
|
||||
|
||||
# 将结果水平堆叠在一起
|
||||
combined = np.hstack((result, result_P))
|
||||
|
||||
# 更新 edge 变量为 PIL.Image 对象
|
||||
edge = Image.fromarray(result)
|
||||
|
||||
# 创建 Toplevel 窗口显示线条变化检测结果
|
||||
try:
|
||||
LineWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
LineWin = Toplevel()
|
||||
LineWin.attributes('-topmost', True)
|
||||
LineWin.geometry("720x300")
|
||||
LineWin.resizable(True, True) # 可缩放
|
||||
LineWin.title("线条变化检测结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(LineWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(combined, cv2.COLOR_BGR2RGB)))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(LineWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
import tkinter as tk
|
||||
from tkinter import filedialog, messagebox
|
||||
from tkinter import Toplevel
|
||||
from PIL import Image, ImageTk
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
|
||||
# 全局变量
|
||||
img_path = "" # 用于存储图像路径
|
||||
src = None # 用于存储已选择的图像
|
||||
X = None # 用于存储第一张图像
|
||||
Y = None # 用于存储第二张图像
|
||||
img_label = None # 用于存储显示选择的图片的标签
|
||||
edge = None # 用于存储处理后的图像
|
||||
|
||||
ThreWin = None # 用于阈值化处理结果窗口
|
||||
VergeWin = None # 用于边缘检测结果窗口
|
||||
LineWin = None # 用于线条变化检测结果窗口
|
||||
|
||||
def select_image(root):
|
||||
"""
|
||||
选择图像文件并显示在主窗口中
|
||||
"""
|
||||
global img_path, src, img_label, edge
|
||||
|
||||
# 弹出文件选择对话框,选择图像文件
|
||||
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
|
||||
if img_path:
|
||||
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
|
||||
img_path_fixed = os.path.normpath(img_path)
|
||||
|
||||
# 使用 cv2.imdecode 加载图像,处理中文路径
|
||||
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
|
||||
if src_temp is None:
|
||||
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
|
||||
return
|
||||
# 将图像从 BGR 转换为 RGB
|
||||
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# 检查 img_label 是否存在且有效,如果不存在则创建新的 Label
|
||||
if img_label is None or not img_label.winfo_exists():
|
||||
img_label = tk.Label(root)
|
||||
img_label.pack(side=tk.TOP, pady=10)
|
||||
|
||||
# 使用 PIL 加载并缩放图像以适应标签大小
|
||||
img = Image.open(img_path)
|
||||
img.thumbnail((160, 160))
|
||||
img_tk = ImageTk.PhotoImage(img)
|
||||
img_label.configure(image=img_tk)
|
||||
img_label.image = img_tk
|
||||
|
||||
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
|
||||
edge = Image.fromarray(src)
|
||||
else:
|
||||
messagebox.showerror("错误", "没有选择图片路径")
|
||||
|
||||
def changeSize(event, img, LabelPic):
|
||||
"""
|
||||
动态调整图像大小以适应窗口大小
|
||||
"""
|
||||
img_aspect = img.shape[1] / img.shape[0] # 计算图像宽高比
|
||||
new_aspect = event.width / event.height # 计算新窗口的宽高比
|
||||
|
||||
# 根据宽高比调整图像大小
|
||||
if new_aspect > img_aspect:
|
||||
new_width = int(event.height * img_aspect)
|
||||
new_height = event.height
|
||||
else:
|
||||
new_width = event.width
|
||||
new_height = int(event.width / img_aspect)
|
||||
|
||||
# 调整图像大小并更新显示
|
||||
resized_image = cv2.resize(img, (new_width, new_height))
|
||||
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
|
||||
LabelPic.image = image1
|
||||
LabelPic['image'] = image1
|
||||
|
||||
def savefile():
|
||||
"""
|
||||
保存处理后的图像
|
||||
"""
|
||||
global edge
|
||||
|
||||
# 弹出文件保存对话框
|
||||
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
|
||||
if not filename:
|
||||
return
|
||||
# 确保 edge 变量已定义
|
||||
if edge is not None:
|
||||
try:
|
||||
edge.save(filename)
|
||||
messagebox.showinfo("保存成功", "图片保存成功!")
|
||||
except Exception as e:
|
||||
messagebox.showerror("保存失败", f"无法保存图片: {e}")
|
||||
else:
|
||||
messagebox.showerror("保存失败", "没有图像可保存")
|
||||
|
||||
def threshold(root):
|
||||
"""
|
||||
对图像进行阈值化处理并显示结果
|
||||
"""
|
||||
global src, ThreWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 转变图像为灰度图
|
||||
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# TRIANGLE 自适应阈值
|
||||
ret, TRIANGLE_img = cv2.threshold(gray, 0, 255, cv2.THRESH_TRIANGLE)
|
||||
# OTSU 自适应阈值
|
||||
ret, OTSU_img = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
|
||||
# TRUNC 截断阈值(200)
|
||||
ret, TRUNC_img = cv2.threshold(gray, 200, 255, cv2.THRESH_TRUNC)
|
||||
# TOZERO 归零阈值(100)
|
||||
ret, TOZERO__img = cv2.threshold(gray, 100, 255, cv2.THRESH_TOZERO)
|
||||
|
||||
# 将处理后的图像拼接在一起
|
||||
combined = np.hstack((TRIANGLE_img, OTSU_img, TRUNC_img, TOZERO__img))
|
||||
|
||||
# 更新 edge 变量
|
||||
edge = Image.fromarray(combined)
|
||||
|
||||
# 创建 Toplevel 窗口用于显示处理结果
|
||||
try:
|
||||
ThreWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
ThreWin = Toplevel()
|
||||
ThreWin.attributes('-topmost', True)
|
||||
ThreWin.geometry("720x300")
|
||||
ThreWin.resizable(True, True) # 可缩放
|
||||
ThreWin.title("阈值化结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(ThreWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(ThreWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
|
||||
def verge(root):
|
||||
"""
|
||||
对图像进行边缘检测并显示结果
|
||||
"""
|
||||
global src, VergeWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 转变图像为灰度图
|
||||
grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# 1. Roberts 算子
|
||||
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
|
||||
kernely = np.array([[0, -1], [1, 0]], dtype=int)
|
||||
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
|
||||
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
|
||||
absX = cv2.convertScaleAbs(x)
|
||||
absY = cv2.convertScaleAbs(y)
|
||||
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
||||
|
||||
# 2. Sobel 算子
|
||||
x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0)
|
||||
y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1)
|
||||
absX = cv2.convertScaleAbs(x)
|
||||
absY = cv2.convertScaleAbs(y)
|
||||
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
||||
|
||||
# 3. 拉普拉斯算法 & 高斯滤波
|
||||
gray = cv2.GaussianBlur(grayImage, (5, 5), 0, 0)
|
||||
dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
|
||||
Laplacian = cv2.convertScaleAbs(dst)
|
||||
|
||||
# 4. LoG 边缘算子 & 边缘扩充 & 高斯滤波
|
||||
gray = cv2.copyMakeBorder(grayImage, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE)
|
||||
image = cv2.GaussianBlur(gray, (3, 3), 0, 0)
|
||||
#使用Numpy定义LoG算子
|
||||
m1 = np.array(
|
||||
[[0, 0, -1, 0, 0], [0, -1, -2, -1, 0], [-1, -2, 16, -2, -1], [0, -1, -2, -1, 0], [0, 0, -1, 0, 0]])
|
||||
image1 = np.zeros(image.shape)
|
||||
rows = image.shape[0]
|
||||
cols = image.shape[1]
|
||||
for i in range(2, rows - 2):
|
||||
for j in range(2, cols - 2):
|
||||
image1[i, j] = np.sum((m1 * image[i - 2:i + 3, j - 2:j + 3]))
|
||||
|
||||
Log = cv2.convertScaleAbs(image1)
|
||||
|
||||
# 5. Canny 边缘检测
|
||||
image = cv2.GaussianBlur(grayImage, (3, 3), 0)
|
||||
gradx = cv2.Sobel(image, cv2.CV_16SC1, 1, 0)
|
||||
grady = cv2.Sobel(image, cv2.CV_16SC1, 0, 1)
|
||||
edge_output = cv2.Canny(gradx, grady, 50, 150)
|
||||
|
||||
# 调整大小以匹配原始图像大小
|
||||
Roberts = cv2.resize(Roberts, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Sobel = cv2.resize(Sobel, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Laplacian = cv2.resize(Laplacian, (grayImage.shape[1], grayImage.shape[0]))
|
||||
Log = cv2.resize(Log, (grayImage.shape[1], grayImage.shape[0]))
|
||||
edge_output = cv2.resize(edge_output, (grayImage.shape[1], grayImage.shape[0]))
|
||||
|
||||
# 将结果水平堆叠在一起
|
||||
combined = np.hstack((Roberts, Sobel, Laplacian, Log, edge_output))
|
||||
|
||||
# 更新 edge 变量为 PIL.Image 对象
|
||||
edge = Image.fromarray(combined)
|
||||
|
||||
# 创建 Toplevel 窗口显示边缘检测结果
|
||||
try:
|
||||
VergeWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
VergeWin = Toplevel()
|
||||
VergeWin.attributes('-topmost', True)
|
||||
VergeWin.geometry("720x300")
|
||||
VergeWin.resizable(True, True) # 可缩放
|
||||
VergeWin.title("边缘检测结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(VergeWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(combined))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(VergeWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
|
||||
|
||||
def line_chan(root):
|
||||
"""
|
||||
检测图像中的线条变化并显示结果
|
||||
"""
|
||||
global src, LineWin, edge
|
||||
|
||||
# 判断是否已经选取图片
|
||||
if src is None:
|
||||
messagebox.showerror("错误", "没有选择图片!")
|
||||
return
|
||||
|
||||
# 使用高斯模糊和 Canny 边缘检测处理图像
|
||||
img = cv2.GaussianBlur(src, (3, 3), 0)
|
||||
edges = cv2.Canny(img, 50, 150, apertureSize=3)
|
||||
|
||||
# 使用 HoughLines 算法检测直线
|
||||
lines = cv2.HoughLines(edges, 1, np.pi / 2, 118)
|
||||
result = img.copy()
|
||||
for i_line in lines:
|
||||
for line in i_line:
|
||||
rho = line[0]
|
||||
theta = line[1]
|
||||
if (theta < (np.pi / 4.)) or (theta > (3. * np.pi / 4.0)): # 垂直直线
|
||||
pt1 = (int(rho / np.cos(theta)), 0)
|
||||
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
|
||||
cv2.line(result, pt1, pt2, (0, 0, 255))
|
||||
else:
|
||||
pt1 = (0, int(rho / np.sin(theta)))
|
||||
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
|
||||
cv2.line(result, pt1, pt2, (0, 0, 255), 1)
|
||||
|
||||
# 使用 HoughLinesP 算法检测直线段
|
||||
minLineLength = 200
|
||||
maxLineGap = 15
|
||||
linesP = cv2.HoughLinesP(edges, 1, np.pi / 180, 80, minLineLength, maxLineGap)
|
||||
result_P = img.copy()
|
||||
for i_P in linesP:
|
||||
for x1, y1, x2, y2 in i_P:
|
||||
cv2.line(result_P, (x1, y1), (x2, y2), (0, 255, 0), 3)
|
||||
|
||||
# 将结果水平堆叠在一起
|
||||
combined = np.hstack((result, result_P))
|
||||
|
||||
# 更新 edge 变量为 PIL.Image 对象
|
||||
edge = Image.fromarray(result)
|
||||
|
||||
# 创建 Toplevel 窗口显示线条变化检测结果
|
||||
try:
|
||||
LineWin.destroy()
|
||||
except Exception as e:
|
||||
print("NVM")
|
||||
finally:
|
||||
LineWin = Toplevel()
|
||||
LineWin.attributes('-topmost', True)
|
||||
LineWin.geometry("720x300")
|
||||
LineWin.resizable(True, True) # 可缩放
|
||||
LineWin.title("线条变化检测结果")
|
||||
|
||||
# 显示图像
|
||||
LabelPic = tk.Label(LineWin, text="IMG", width=720, height=240)
|
||||
image = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(combined, cv2.COLOR_BGR2RGB)))
|
||||
LabelPic.image = image
|
||||
LabelPic['image'] = image
|
||||
|
||||
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
|
||||
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
|
||||
|
||||
# 添加保存按钮
|
||||
btn_save = tk.Button(LineWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
|
||||
command=savefile)
|
||||
btn_save.pack(pady=10)
|
||||
|
Loading…
Reference in new issue