Delete 'basic/noise_filter.py'

main
pos97em56 5 months ago
parent de102498ae
commit f2d0d9cdd4

@ -1,303 +0,0 @@
import tkinter as tk
from tkinter import filedialog, messagebox
from tkinter import Toplevel
from PIL import Image, ImageTk
import numpy as np
import math
import cv2
import os
img_path = "" # 全局变量,用于存储图像路径
src = None # 全局变量,用于存储已选择的图像
X = None # 用于存储第一张图像
Y = None # 用于存储第二张图像
img_label = None # 全局变量,用于存储显示选择的图片的标签
GeomeanWin = None
SortstatWin = None
SelectWin = None
def select_image(root):
global img_path, src, img_label, edge
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
if img_path:
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
img_path_fixed = os.path.normpath(img_path)
# 图像输入
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if src_temp is None:
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
return
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
# 检查 img_label 是否存在且有效
if img_label is None or not img_label.winfo_exists():
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
edge = Image.fromarray(src)
else:
messagebox.showerror("错误", "没有选择图片路径")
def show_selected_image(root):
global img_label
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
def changeSize(event, img, LabelPic):
img_aspect = img.shape[1] / img.shape[0]
new_aspect = event.width / event.height
if new_aspect > img_aspect:
new_width = int(event.height * img_aspect)
new_height = event.height
else:
new_width = event.width
new_height = int(event.width / img_aspect)
resized_image = cv2.resize(img, (new_width, new_height))
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
LabelPic.image = image1
LabelPic['image'] = image1
def savefile():
global edge
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
if not filename:
return
# 确保 edge 变量已定义
if edge is not None:
try:
edge.save(filename)
messagebox.showinfo("保存成功", "图片保存成功!")
except Exception as e:
messagebox.showerror("保存失败", f"无法保存图片: {e}")
else:
messagebox.showerror("保存失败", "没有图像可保存")
#几何均值滤波
def geo_mean_filter(root):
global src, GeomeanWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 待输出的图片
output = np.zeros(image.shape, np.uint8)
# 遍历图像,进行均值滤波
for i in range(image.shape[0]):
for j in range(image.shape[1]):
# 计算均值,完成对图片src的几何均值滤波
ji = 1.0
# 遍历滤波器内的像素值
for k in range(-1, 2):
if 0 <= j + k < image.shape[1]:
ji *= image[i, j + k]
# 滤波器的大小为1*3
geom_mean = math.pow(ji, 1 / 3.0)
output[i, j] = int(geom_mean)
# 更新 edge 变量
edge = Image.fromarray(output)
# 创建Toplevel窗口
try:
GeomeanWin.destroy()
except Exception:
print("NVM")
finally:
GeomeanWin = Toplevel()
GeomeanWin.attributes('-topmost', True)
GeomeanWin.geometry("720x300")
GeomeanWin.resizable(True, True) # 可缩放
GeomeanWin.title("几何均值滤波结果")
# 显示图像
LabelPic = tk.Label(GeomeanWin, text="IMG", width=360, height=240)
image = ImageTk.PhotoImage(Image.fromarray(output))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, output, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(GeomeanWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#排序统计类滤波
def sort_stat_filter(root):
global src, SortstatWin, combined, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 待输出的图片
output_max = np.zeros(image.shape, np.uint8)
output_median = np.zeros(image.shape, np.uint8)
output_min = np.zeros(image.shape, np.uint8)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
# 用于存储3x3邻域像素值
neighbors = []
for m in range(-1, 2):
for n in range(-1, 2):
if 0 <= i + m < image.shape[0] and 0 <= j + n < image.shape[1]:
neighbors.append(image[i + m, j + n])
# 最大值滤波
output_max[i, j] = max(neighbors)
# 中值滤波
output_median[i, j] = np.median(neighbors)
# 最小值滤波
output_min[i, j] = min(neighbors)
combined = np.hstack((output_max, output_median, output_min))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
SortstatWin.destroy()
except Exception:
print("NVM")
finally:
SortstatWin = Toplevel()
SortstatWin.attributes('-topmost', True)
SortstatWin.geometry("720x300")
SortstatWin.resizable(True, True) # 可缩放
SortstatWin.title("排序统计类滤波结果")
# 显示图像
LabelPic = tk.Label(SortstatWin, text="IMG", width=360, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(SortstatWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#选择性滤波
def selective_filter(root):
global src, SelectWin, combined, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 待输出的图片
output_low_pass = np.zeros(image.shape, np.uint8)
output_high_pass = np.zeros(image.shape, np.uint8)
output_band_pass = np.zeros(image.shape, np.uint8)
output_band_stop = np.zeros(image.shape, np.uint8)
# 边界
low_pass_threshold = 100
high_pass_threshold = 100
band_pass_low_threshold = 100
band_pass_high_threshold = 200
band_stop_low_threshold = 100
band_stop_high_threshold = 200
for i in range(image.shape[0]):
for j in range(image.shape[1]):
pixel_value = image[i][j]
# 低通滤波器
if pixel_value <= low_pass_threshold:
output_low_pass[i][j] = pixel_value
else:
output_low_pass[i][j] = 0
# 高通滤波器
if pixel_value >= high_pass_threshold:
output_high_pass[i][j] = pixel_value
else:
output_high_pass[i][j] = 0
# 带通滤波器
if band_pass_low_threshold < pixel_value <= band_pass_high_threshold:
output_band_pass[i][j] = pixel_value
else:
output_band_pass[i][j] = 0
# 带阻滤波器
if band_stop_low_threshold < pixel_value <= band_stop_high_threshold:
output_band_stop[i][j] = 0
else:
output_band_stop[i][j] = pixel_value
combined = np.hstack((output_low_pass, output_high_pass, output_band_pass, output_band_stop))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
SelectWin.destroy()
except Exception:
print("NVM")
finally:
SelectWin = Toplevel()
SelectWin.attributes('-topmost', True)
SelectWin.geometry("720x300")
SelectWin.resizable(True, True) # 可缩放
SelectWin.title("选择性滤波结果")
# 显示图像
LabelPic = tk.Label(SelectWin, text="IMG", width=360, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(SelectWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
Loading…
Cancel
Save