import tkinter as tk from tkinter import filedialog, messagebox from tkinter import Toplevel from PIL import Image, ImageTk import numpy as np import cv2 import os img_path = "" # 全局变量,用于存储图像路径 src = None # 全局变量,用于存储已选择的图像 img_label = None # 全局变量,用于存储显示选择的图片的标签 edge = None FreqsharWin = 0 AirsharWin = 0 def select_image(root): global img_path, src, img_label, edge img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) if img_path: # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 img_path_fixed = os.path.normpath(img_path) # 图像输入 src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) if src_temp is None: messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") return src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) # 检查 img_label 是否存在且有效 if img_label is None or not img_label.winfo_exists(): img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk # 定义 edge 变量为 PIL.Image 对象,以便稍后保存 edge = Image.fromarray(src) else: messagebox.showerror("错误", "没有选择图片路径") def select_image(root): global img_path, src, img_label img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) if img_path: # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 img_path_fixed = os.path.normpath(img_path) # 图像输入 src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) if src_temp is None: messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") return src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) # 检查 img_label 是否存在且有效 if img_label is None or not img_label.winfo_exists(): img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk src = cv2.cvtColor(src, cv2.COLOR_BGR2RGB) else: messagebox.showerror("错误", "没有选择图片路径") def show_selected_image(root): global img_label img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((200, 200)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk def changeSize(event, img, LabelPic): img_aspect = img.shape[1] / img.shape[0] new_aspect = event.width / event.height if new_aspect > img_aspect: new_width = int(event.height * img_aspect) new_height = event.height else: new_width = event.width new_height = int(event.width / img_aspect) resized_image = cv2.resize(img, (new_width, new_height)) image1 = ImageTk.PhotoImage(Image.fromarray(resized_image)) LabelPic.image = image1 LabelPic['image'] = image1 def savefile(): global edge filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")]) if not filename: return # 确保 edge 变量已定义 if edge is not None: try: edge.save(filename) messagebox.showinfo("保存成功", "图片保存成功!") except Exception as e: messagebox.showerror("保存失败", f"无法保存图片: {e}") else: messagebox.showerror("保存失败", "没有图像可保存") #频域锐化 def freq_shar(root): global src, FreqsharWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 理想高通滤波 def Ideal_HighPassFilter(rows, cols, crow, ccol, D0=40): # 创建空白图像以存储滤波结果 Ideal_HighPass = np.zeros((rows, cols), np.uint8) # 计算理想高通滤波器 for i in range(rows): for j in range(cols): D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) if D >= D0: Ideal_HighPass[i, j] = 255 # 应用滤波器到频域表示 mask = Ideal_HighPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得处理后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back #Butterworth高通滤波器 def ButterWorth_HighPassFilter(rows, cols, crow, ccol, D0=40, n=2): # 创建空白图像以存储滤波结果 ButterWorth_HighPass = np.zeros((rows, cols), np.uint8) # 计算 Butterworth 高通滤波器 for i in range(rows): for j in range(cols): D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) if D == 0: ButterWorth_HighPass[i, j] = 0 # 如果 D = 0,直接赋值为 0,避免除以零错误 else: ButterWorth_HighPass[i, j] = 255 / (1 + (D0 / D) ** (2 * n)) # 应用滤波器到频域表示 mask = ButterWorth_HighPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得处理后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back #Gauss高通滤波器 def Gauss_HighPassFilter(rows, cols, crow, ccol, D0=40): # 创建空白图像以存储滤波结果 Gauss_HighPass = np.zeros((rows, cols), np.uint8) # 计算 Gauss 高通滤波器 for i in range(rows): for j in range(cols): D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2) Gauss_HighPass[i, j] = 255 * (1 - np.exp(-0.5 * (D ** 2) / (D0 ** 2))) # 应用滤波器到频域表示 mask = Gauss_HighPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得平滑后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back # 读取灰度图像 im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 获取图像尺寸 rows, cols = im.shape crow, ccol = rows // 2, cols // 2 # 中心位置 # 获取图像的频域表示 dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) # 理想高通滤波器 Ideal_HighPass = Ideal_HighPassFilter(rows, cols, crow, ccol) # 巴特沃斯高通滤波器 ButterWorth_HighPass = ButterWorth_HighPassFilter(rows, cols, crow, ccol) # 高斯高通滤波器 Gauss_HighPass = Gauss_HighPassFilter(rows, cols, crow, ccol) combined = np.hstack((Ideal_HighPass, ButterWorth_HighPass, Gauss_HighPass)) # 更新 edge 变量 edge = Image.fromarray(combined) # 创建Toplevel窗口 try: FreqsharWin.destroy() except Exception as e: print("NVM") finally: FreqsharWin = Toplevel() FreqsharWin.attributes('-topmost', True) FreqsharWin.geometry("720x300") FreqsharWin.resizable(True, True) # 可缩放 FreqsharWin.title("频域锐化结果") # 显示图像 LabelPic = tk.Label(FreqsharWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(FreqsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) return #空域锐化 def air_shar(root): global src, AirsharWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 定义Roberts边缘检测算子 def Roberts(Image_In, height, width): # 创建输出图像 Roberts = np.zeros((height - 1, width - 1), dtype=np.uint8) # 进行Roberts边缘检测 for i in range(height - 1): for j in range(width - 1): # 计算Roberts响应 tmp = abs(int(Image_In[i + 1, j + 1]) - int(Image_In[i, j])) + abs( int(Image_In[i + 1, j]) - int(Image_In[i, j + 1])) tmp = max(0, min(255, tmp)) # 确保结果在0到255之间 Roberts[i, j] = tmp return Roberts # 定义Sobel边缘检测算子 def Sobel(Image_In, height, width): # 创建输出图像 Image_Sobel = np.zeros((height - 2, width - 2), dtype=np.uint8) # 进行Sobel边缘检测 for i in range(1, height - 1): for j in range(1, width - 1): # 使用Sobel算子计算水平和垂直方向的梯度 tmp1 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) + int(Image_In[i + 1, j - 1]) + 2 * int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1])) tmp2 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) + int(Image_In[i - 1, j + 1]) + 2 * int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1])) tmp = tmp1 + tmp2 tmp = max(0, min(255, tmp)) # 确保结果在0到255之间 Image_Sobel[i - 1, j - 1] = tmp return Image_Sobel # 定义Prewitt边缘检测算子 def Prewitt(Image_In, height, width): # 创建输出图像 Image_Prewitt = np.zeros((height - 2, width - 2), dtype=np.uint8) # 进行Prewitt边缘检测 for i in range(1, height - 1): for j in range(1, width - 1): # 使用Prewitt算子计算水平和垂直方向的梯度 tmp1 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) + int(Image_In[i + 1, j - 1]) + int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1])) tmp2 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) + int(Image_In[i - 1, j + 1]) + int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1])) tmp = tmp1 + tmp2 tmp = max(0, min(255, tmp)) # 确保结果在0到255之间 Image_Prewitt[i - 1, j - 1] = tmp return Image_Prewitt # 将彩色图像转换为灰度图像 im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 获取图像的尺寸 height, width = im.shape # 使用各种算子进行边缘检测 Rob = Roberts(im, height, width) # Roberts算子 Sob = Sobel(im, height, width) # Sobel算子 Pre = Prewitt(im, height, width) # Prewitt算子 # 找出最小的尺寸,以便进行裁剪使得结果图像尺寸一致 min_height = min(Rob.shape[0], Sob.shape[0], Pre.shape[0]) min_width = min(Rob.shape[1], Sob.shape[1], Pre.shape[1]) # 对所有结果进行裁剪,使它们的尺寸一致 Rob = Rob[:min_height, :min_width] Sob = Sob[:min_height, :min_width] Pre = Pre[:min_height, :min_width] # 将三种边缘检测结果水平拼接成一张图像 combined = np.hstack((Rob, Sob, Pre)) # 更新 edge 变量,这里假设 edge 是用来存储结果图像的变量 # 创建Toplevel窗口用于显示结果 try: AirsharWin.destroy() except Exception as e: print("NVM") finally: AirsharWin = Toplevel() AirsharWin.attributes('-topmost', True) AirsharWin.geometry("720x300") AirsharWin.resizable(True, True) # 可缩放 AirsharWin.title("空域锐化结果") # 显示图像 LabelPic = tk.Label(AirsharWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image # 配置LabelPic以自适应窗口大小 LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(AirsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) return