import cv2 import os import numpy as np import pytesseract def locate_license_plate(image_path): if not os.path.isfile(image_path): print(f"Error: File '{image_path}' does not exist.") return None """ 根据输入的图像路径,定位蓝色车牌并返回裁剪出的车牌区域 """ # 读取图像 car = cv2.imread(image_path, 1) if car is None: print(f"Error: Unable to read image '{image_path}'") return None # 定义蓝色所对应的色彩空间范围 lower_blue = np.array([100, 110, 110]) upper_blue = np.array([130, 255, 255]) # 将图像转换到HSV颜色空间 hsv = cv2.cvtColor(car, cv2.COLOR_BGR2HSV) # 获取蓝色区域的掩模 mask_blue = cv2.inRange(hsv, lower_blue, upper_blue) # 将掩模转换为灰度图像 mask = mask_blue # 形态学处理,开运算和闭运算 matrix = np.ones((20, 20), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, matrix) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, matrix) # 二值化 ret, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY) # 查找轮廓 contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 寻找最大轮廓并定位车牌 max_area = 0 best_contour = None for contour in contours: area = cv2.contourArea(contour) if area > max_area: max_area = area best_contour = contour # 获取定位车牌的外接矩形框 rect = cv2.minAreaRect(best_contour) box = cv2.boxPoints(rect) box = np.int32(box) # 获取旋转矩阵 angle = rect[2] flag = 0 print(angle) if angle < -45: angle += 90 flag = 1 if angle > 45: angle -= 90 flag = 1 print(angle) center = (rect[0][0], rect[0][1]) size = (int(rect[1][0]), int(rect[1][1])) M = cv2.getRotationMatrix2D(center, angle, 1.0) # 旋转图像 height, width = car.shape[:2] rotated = cv2.warpAffine(car, M, (width, height)) # 获取旋转后矩形框的坐标 if flag == 0: box = cv2.boxPoints(((center[0], center[1]), (size[0], size[1]), 0.0)) box = np.int32(box) # 裁剪车牌区域 xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]] ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]] x1, x2 = min(xs), max(xs) y1, y2 = min(ys), max(ys) ROI_plate = rotated[y1:y2, x1:x2] return ROI_plate def preprocess_image_for_ocr(image): """ 预处理图像以提高 OCR 识别率 """ # # 去除左右上下各3个像素的边框 height, width = image.shape[:2] image = image[3:height - 3, 3:width - 3] # 调整图像大小到 165x40 image = cv2.resize(image, (165, 40), interpolation=cv2.INTER_AREA) # 转换为灰度图像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 二值化 _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 去噪 denoised = cv2.medianBlur(binary, 3) return denoised def find_split_line(image): """ 在宽度15-30像素之间查找分割线 """ height, width = image.shape column_sums = np.sum(image[3:height - 3, 15:30], axis=0) # 忽略顶部和底部的像素 zero_columns = np.where(column_sums == 0)[0] # 找到像素和为0的列 if len(zero_columns) == 0: # 如果没有找到和为0的列,返回默认分割线为22 split_line = 22 else: # 计算零列的中值作为分割线 split_line = int(np.median(zero_columns)) + 15 # 加上偏移量15 print(split_line) return split_line def recognize_characters(image): """ 使用OCR技术识别车牌上的字符 """ preprocessed_image = preprocess_image_for_ocr(image) # 找到分割线 split_line = find_split_line(preprocessed_image) # 切割图像为两部分 part1 = preprocessed_image[:, :split_line] # 宽度0-split_line部分 part2 = preprocessed_image[:, split_line:] # 剩余部分 # 调用 Tesseract OCR 识别第一部分 custom_config_chi_sim = r'--oem 3 --psm 6 -l chi_sim' result_chi_sim = pytesseract.image_to_string(part1, config=custom_config_chi_sim) # 调用 Tesseract OCR 识别第二部分 custom_config_default = r'--oem 3 --psm 6' result_default = pytesseract.image_to_string(part2, config=custom_config_default) # 合并两个部分的识别结果 recognized_characters = result_chi_sim.strip() + result_default.strip() return recognized_characters