import tkinter as tk from tkinter import filedialog, messagebox from tkinter import Toplevel from PIL import Image, ImageTk import numpy as np import cv2 import os img_path = "" # 全局变量,用于存储图像路径 src = None # 全局变量,用于存储已选择的图像 img_label = None # 全局变量,用于存储显示选择的图片的标签 edge = None FreqsmoWin = None AirsmoWin = None def select_image(root): global img_path, src, img_label, edge img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) if img_path: # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 img_path_fixed = os.path.normpath(img_path) # 图像输入 src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) if src_temp is None: messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") return src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) # 检查 img_label 是否存在且有效 if img_label is None or not img_label.winfo_exists(): img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk # 定义 edge 变量为 PIL.Image 对象,以便稍后保存 edge = Image.fromarray(src) else: messagebox.showerror("错误", "没有选择图片路径") def show_selected_image(root): global img_label img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk def changeSize(event, img, LabelPic): img_aspect = img.shape[1] / img.shape[0] new_aspect = event.width / event.height if new_aspect > img_aspect: new_width = int(event.height * img_aspect) new_height = event.height else: new_width = event.width new_height = int(event.width / img_aspect) resized_image = cv2.resize(img, (new_width, new_height)) image1 = ImageTk.PhotoImage(Image.fromarray(resized_image)) LabelPic.image = image1 LabelPic['image'] = image1 def savefile(): global edge filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")]) if not filename: return # 确保 edge 变量已定义 if edge is not None: try: edge.save(filename) messagebox.showinfo("保存成功", "图片保存成功!") except Exception as e: messagebox.showerror("保存失败", f"无法保存图片: {e}") else: messagebox.showerror("保存失败", "没有图像可保存") #频域平滑 def freq_smo(root): global src, FreqsmoWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 理想低通滤波器 def Ideal_LowPassFilter(rows, cols, crow, ccol, D0=20): # 创建一个与输入图像大小相同的空白图像 Ideal_LowPass = np.zeros((rows, cols), dtype=np.uint8) # 创建理想低通滤波器 for i in range(rows): for j in range(cols): x = i - crow y = j - ccol D = np.sqrt(x**2 + y**2) if D <= D0: Ideal_LowPass[i, j] = 255 # 应用滤波器到频域表示 mask = Ideal_LowPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得平滑后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back # 布特沃斯低通滤波器 def ButterWorth_LowPassFilter(rows, cols, crow, ccol, D0=20, n=2): # 创建一个与输入图像大小相同的空白图像 ButterWorth_LowPass = np.zeros((rows, cols), dtype=np.uint8) # 创建巴特沃斯低通滤波器 for i in range(rows): for j in range(cols): x = i - crow y = j - ccol D = np.sqrt(x ** 2 + y ** 2) ButterWorth_LowPass[i, j] = 255 / (1 + (D / D0) ** (2 * n)) # 应用滤波器到频域表示 mask = ButterWorth_LowPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得平滑后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back # 高斯低通滤波器 def Gauss_LowPassFilter(rows, cols, crow, ccol, D0=20): # 创建一个与输入图像大小相同的空白图像 Gauss_LowPass = np.zeros((rows, cols), dtype=np.uint8) # 创建高斯低通滤波器 for i in range(rows): for j in range(cols): x = i - crow y = j - ccol D = np.sqrt(x ** 2 + y ** 2) Gauss_LowPass[i, j] = 255 * np.exp(-0.5 * (D ** 2) / (D0 ** 2)) # 应用滤波器到频域表示 mask = Gauss_LowPass[:, :, np.newaxis] fshift = dft_shift * mask # 逆傅里叶变换以获得平滑后的图像 f_ishift = np.fft.ifftshift(fshift) img_back = cv2.idft(f_ishift) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 归一化图像到0-255 cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX) img_back = np.uint8(img_back) return img_back # 读取灰度图像 im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 获取图像的频域表示 dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT) dft_shift = np.fft.fftshift(dft) # 获取图像的尺寸 rows, cols = im.shape crow, ccol = rows // 2, cols // 2 # 理想低通滤波器 Ideal_LowPass = Ideal_LowPassFilter(rows, cols, crow, ccol) # 巴特沃斯低通滤波器 ButterWorth_LowPass = ButterWorth_LowPassFilter(rows, cols, crow, ccol) # 高斯低通滤波器 Gauss_LowPass = Gauss_LowPassFilter(rows, cols, crow, ccol) combined = np.hstack((Ideal_LowPass, ButterWorth_LowPass, Gauss_LowPass)) # 更新 edge 变量 edge = Image.fromarray(combined) # 创建Toplevel窗口 try: FreqsmoWin.destroy() except Exception as e: print("NVM") finally: FreqsmoWin = Toplevel() FreqsmoWin.attributes('-topmost', True) FreqsmoWin.geometry("720x300") FreqsmoWin.resizable(True, True) # 可缩放 FreqsmoWin.title("频域平滑结果") # 显示图像 LabelPic = tk.Label(FreqsmoWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(FreqsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) return #空域平滑 def air_smo(root): global src, AirsmoWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 均值平滑滤波 def mean_filter(image, height, width): # 创建空白图像以存储滤波结果 filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8) # 执行3x3均值滤波 for i in range(1, height - 1): for j in range(1, width - 1): tmp = (int(image[i - 1, j - 1]) + int(image[i - 1, j]) + int(image[i - 1, j + 1]) + int(image[i, j - 1]) + int(image[i, j]) + int(image[i, j + 1]) + int(image[i + 1, j - 1]) + int(image[i + 1, j]) + int(image[i + 1, j + 1])) // 9 filtered_image[i - 1, j - 1] = tmp return filtered_image # 中值平滑滤波 def median_filter(image, height, width): # 创建空白图像以存储滤波结果 filtered_image = np.zeros((height - 2, width - 2), dtype=np.uint8) # 执行3x3中值滤波 for i in range(1, height - 1): for j in range(1, width - 1): # 取3x3邻域 region = [ image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1], image[i, j - 1], image[i, j], image[i, j + 1], image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1] ] # 计算中值 filtered_image[i - 1, j - 1] = np.median(region) return filtered_image # 5x5 中值平滑滤波 def med_filter_5x5(image, height, width): # 创建空白图像以存储滤波结果 filtered_image = np.zeros((height - 4, width - 4), dtype=np.uint8) # 执行5x5中值滤波 for i in range(2, height - 2): for j in range(2, width - 2): # 取5x5邻域的所有值 neighbors = [ image[i - 2, j - 2], image[i - 2, j - 1], image[i - 2, j], image[i - 2, j + 1], image[i - 2, j + 2], image[i - 1, j - 2], image[i - 1, j - 1], image[i - 1, j], image[i - 1, j + 1], image[i - 1, j + 2], image[i, j - 2], image[i, j - 1], image[i, j], image[i, j + 1], image[i, j + 2], image[i + 1, j - 2], image[i + 1, j - 1], image[i + 1, j], image[i + 1, j + 1], image[i + 1, j + 2], image[i + 2, j - 2], image[i + 2, j - 1], image[i + 2, j], image[i + 2, j + 1], image[i + 2, j + 2] ] # 计算中值 filtered_image[i - 2, j - 2] = np.median(neighbors) return filtered_image # 读取灰度图像 im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 获取图像尺寸 height, width = im.shape # 邻域平均 mean = mean_filter(im, height, width) # 中值滤波3x3 median = median_filter(im, height, width) # 中值滤波5x5 med = med_filter_5x5(im, height, width) min_height = min(mean.shape[0], median.shape[0], med.shape[0]) min_width = min(mean.shape[1], median.shape[1], med.shape[1]) mean_cropped = mean[:min_height, :min_width] median_cropped = median[:min_height, :min_width] med_cropped = med[:min_height, :min_width] combined = np.hstack((mean_cropped, median_cropped, med_cropped)) # 更新 edge 变量 edge = Image.fromarray(combined) # 创建Toplevel窗口 try: AirsmoWin.destroy() except Exception as e: print("NVM") finally: AirsmoWin = Toplevel() AirsmoWin.attributes('-topmost', True) AirsmoWin.geometry("720x300") AirsmoWin.resizable(True, True) # 可缩放 AirsmoWin.title("空域平滑结果") # 显示图像 LabelPic = tk.Label(AirsmoWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(AirsmoWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) return