import tkinter as tk from tkinter import filedialog, messagebox from tkinter import Toplevel from PIL import Image, ImageTk import numpy as np import cv2 import os # 全局变量 img_path = "" # 用于存储图像路径 src = None # 用于存储已选择的图像 X = None # 用于存储第一张图像 Y = None # 用于存储第二张图像 img_label = None # 用于存储显示选择的图片的标签 edge = None # 用于存储处理后的图像 ThreWin = None # 用于阈值化处理结果窗口 VergeWin = None # 用于边缘检测结果窗口 LineWin = None # 用于线条变化检测结果窗口 def select_image(root): """ 选择图像文件并显示在主窗口中 """ global img_path, src, img_label, edge # 弹出文件选择对话框,选择图像文件 img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")]) if img_path: # 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径 img_path_fixed = os.path.normpath(img_path) # 使用 cv2.imdecode 加载图像,处理中文路径 src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED) if src_temp is None: messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径") return # 将图像从 BGR 转换为 RGB src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB) # 检查 img_label 是否存在且有效,如果不存在则创建新的 Label if img_label is None or not img_label.winfo_exists(): img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) # 使用 PIL 加载并缩放图像以适应标签大小 img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk # 定义 edge 变量为 PIL.Image 对象,以便稍后保存 edge = Image.fromarray(src) else: messagebox.showerror("错误", "没有选择图片路径") def show_selected_image(root): """ 显示已选择的图像 """ global img_label img_label = tk.Label(root) img_label.pack(side=tk.TOP, pady=10) img = Image.open(img_path) img.thumbnail((160, 160)) img_tk = ImageTk.PhotoImage(img) img_label.configure(image=img_tk) img_label.image = img_tk def changeSize(event, img, LabelPic): """ 动态调整图像大小以适应窗口大小 """ img_aspect = img.shape[1] / img.shape[0] # 计算图像宽高比 new_aspect = event.width / event.height # 计算新窗口的宽高比 # 根据宽高比调整图像大小 if new_aspect > img_aspect: new_width = int(event.height * img_aspect) new_height = event.height else: new_width = event.width new_height = int(event.width / img_aspect) # 调整图像大小并更新显示 resized_image = cv2.resize(img, (new_width, new_height)) image1 = ImageTk.PhotoImage(Image.fromarray(resized_image)) LabelPic.image = image1 LabelPic['image'] = image1 def savefile(): """ 保存处理后的图像 """ global edge # 弹出文件保存对话框 filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")]) if not filename: return # 确保 edge 变量已定义 if edge is not None: try: edge.save(filename) messagebox.showinfo("保存成功", "图片保存成功!") except Exception as e: messagebox.showerror("保存失败", f"无法保存图片: {e}") else: messagebox.showerror("保存失败", "没有图像可保存") def threshold(root): """ 对图像进行阈值化处理并显示结果 """ global src, ThreWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 转变图像为灰度图 gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # TRIANGLE 自适应阈值 ret, TRIANGLE_img = cv2.threshold(gray, 0, 255, cv2.THRESH_TRIANGLE) # OTSU 自适应阈值 ret, OTSU_img = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU) # TRUNC 截断阈值(200) ret, TRUNC_img = cv2.threshold(gray, 200, 255, cv2.THRESH_TRUNC) # TOZERO 归零阈值(100) ret, TOZERO__img = cv2.threshold(gray, 100, 255, cv2.THRESH_TOZERO) # 将处理后的图像拼接在一起 combined = np.hstack((TRIANGLE_img, OTSU_img, TRUNC_img, TOZERO__img)) # 更新 edge 变量 edge = Image.fromarray(combined) # 创建 Toplevel 窗口用于显示处理结果 try: ThreWin.destroy() except Exception as e: print("NVM") finally: ThreWin = Toplevel() ThreWin.attributes('-topmost', True) ThreWin.geometry("720x300") ThreWin.resizable(True, True) # 可缩放 ThreWin.title("阈值化结果") # 显示图像 LabelPic = tk.Label(ThreWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(ThreWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) def verge(root): """ 对图像进行边缘检测并显示结果 """ global src, VergeWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 转变图像为灰度图 grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY) # 1. Roberts 算子 kernelx = np.array([[-1, 0], [0, 1]], dtype=int) kernely = np.array([[0, -1], [1, 0]], dtype=int) x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx) y = cv2.filter2D(grayImage, cv2.CV_16S, kernely) absX = cv2.convertScaleAbs(x) absY = cv2.convertScaleAbs(y) Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0) # 2. Sobel 算子 x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0) y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1) absX = cv2.convertScaleAbs(x) absY = cv2.convertScaleAbs(y) Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0) # 3. 拉普拉斯算法 & 高斯滤波 gray = cv2.GaussianBlur(grayImage, (5, 5), 0, 0) dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3) Laplacian = cv2.convertScaleAbs(dst) # 4. LoG 边缘算子 & 边缘扩充 & 高斯滤波 gray = cv2.copyMakeBorder(grayImage, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE) image = cv2.GaussianBlur(gray, (3, 3), 0, 0) #使用Numpy定义LoG算子 m1 = np.array( [[0, 0, -1, 0, 0], [0, -1, -2, -1, 0], [-1, -2, 16, -2, -1], [0, -1, -2, -1, 0], [0, 0, -1, 0, 0]]) image1 = np.zeros(image.shape) rows = image.shape[0] cols = image.shape[1] for i in range(2, rows - 2): for j in range(2, cols - 2): image1[i, j] = np.sum((m1 * image[i - 2:i + 3, j - 2:j + 3])) Log = cv2.convertScaleAbs(image1) # 5. Canny 边缘检测 image = cv2.GaussianBlur(grayImage, (3, 3), 0) gradx = cv2.Sobel(image, cv2.CV_16SC1, 1, 0) grady = cv2.Sobel(image, cv2.CV_16SC1, 0, 1) edge_output = cv2.Canny(gradx, grady, 50, 150) # 调整大小以匹配原始图像大小 Roberts = cv2.resize(Roberts, (grayImage.shape[1], grayImage.shape[0])) Sobel = cv2.resize(Sobel, (grayImage.shape[1], grayImage.shape[0])) Laplacian = cv2.resize(Laplacian, (grayImage.shape[1], grayImage.shape[0])) Log = cv2.resize(Log, (grayImage.shape[1], grayImage.shape[0])) edge_output = cv2.resize(edge_output, (grayImage.shape[1], grayImage.shape[0])) # 将结果水平堆叠在一起 combined = np.hstack((Roberts, Sobel, Laplacian, Log, edge_output)) # 更新 edge 变量为 PIL.Image 对象 edge = Image.fromarray(combined) # 创建 Toplevel 窗口显示边缘检测结果 try: VergeWin.destroy() except Exception as e: print("NVM") finally: VergeWin = Toplevel() VergeWin.attributes('-topmost', True) VergeWin.geometry("720x300") VergeWin.resizable(True, True) # 可缩放 VergeWin.title("边缘检测结果") # 显示图像 LabelPic = tk.Label(VergeWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(combined)) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(VergeWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10) def line_chan(root): """ 检测图像中的线条变化并显示结果 """ global src, LineWin, edge # 判断是否已经选取图片 if src is None: messagebox.showerror("错误", "没有选择图片!") return # 使用高斯模糊和 Canny 边缘检测处理图像 img = cv2.GaussianBlur(src, (3, 3), 0) edges = cv2.Canny(img, 50, 150, apertureSize=3) # 使用 HoughLines 算法检测直线 lines = cv2.HoughLines(edges, 1, np.pi / 2, 118) result = img.copy() for i_line in lines: for line in i_line: rho = line[0] theta = line[1] if (theta < (np.pi / 4.)) or (theta > (3. * np.pi / 4.0)): # 垂直直线 pt1 = (int(rho / np.cos(theta)), 0) pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0]) cv2.line(result, pt1, pt2, (0, 0, 255)) else: pt1 = (0, int(rho / np.sin(theta))) pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta))) cv2.line(result, pt1, pt2, (0, 0, 255), 1) # 使用 HoughLinesP 算法检测直线段 minLineLength = 200 maxLineGap = 15 linesP = cv2.HoughLinesP(edges, 1, np.pi / 180, 80, minLineLength, maxLineGap) result_P = img.copy() for i_P in linesP: for x1, y1, x2, y2 in i_P: cv2.line(result_P, (x1, y1), (x2, y2), (0, 255, 0), 3) # 将结果水平堆叠在一起 combined = np.hstack((result, result_P)) # 更新 edge 变量为 PIL.Image 对象 edge = Image.fromarray(result) # 创建 Toplevel 窗口显示线条变化检测结果 try: LineWin.destroy() except Exception as e: print("NVM") finally: LineWin = Toplevel() LineWin.attributes('-topmost', True) LineWin.geometry("720x300") LineWin.resizable(True, True) # 可缩放 LineWin.title("线条变化检测结果") # 显示图像 LabelPic = tk.Label(LineWin, text="IMG", width=720, height=240) image = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(combined, cv2.COLOR_BGR2RGB))) LabelPic.image = image LabelPic['image'] = image LabelPic.bind('', lambda event: changeSize(event, combined, LabelPic)) LabelPic.pack(fill=tk.BOTH, expand=tk.YES) # 添加保存按钮 btn_save = tk.Button(LineWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20, command=savefile) btn_save.pack(pady=10)