You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

334 lines
12 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import tkinter as tk
from tkinter import filedialog, messagebox
from tkinter import Toplevel
from PIL import Image, ImageTk
import numpy as np
import cv2
import os
img_path = "" # 全局变量,用于存储图像路径
src = None # 全局变量,用于存储已选择的图像
img_label = None # 全局变量,用于存储显示选择的图片的标签
edge = None
FreqsharWin = 0
AirsharWin = 0
def select_image(root):
global img_path, src, img_label, edge
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
if img_path:
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
img_path_fixed = os.path.normpath(img_path)
# 图像输入
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if src_temp is None:
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
return
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
# 检查 img_label 是否存在且有效
if img_label is None or not img_label.winfo_exists():
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
edge = Image.fromarray(src)
else:
messagebox.showerror("错误", "没有选择图片路径")
def changeSize(event, img, LabelPic):
img_aspect = img.shape[1] / img.shape[0]
new_aspect = event.width / event.height
if new_aspect > img_aspect:
new_width = int(event.height * img_aspect)
new_height = event.height
else:
new_width = event.width
new_height = int(event.width / img_aspect)
resized_image = cv2.resize(img, (new_width, new_height))
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
LabelPic.image = image1
LabelPic['image'] = image1
def savefile():
global edge
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
if not filename:
return
# 确保 edge 变量已定义
if edge is not None:
try:
edge.save(filename)
messagebox.showinfo("保存成功", "图片保存成功!")
except Exception as e:
messagebox.showerror("保存失败", f"无法保存图片: {e}")
else:
messagebox.showerror("保存失败", "没有图像可保存")
#频域锐化
def freq_shar(root):
global src, FreqsharWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 理想高通滤波
def Ideal_HighPassFilter(rows, cols, crow, ccol, D0=40):
# 创建空白图像以存储滤波结果
Ideal_HighPass = np.zeros((rows, cols), np.uint8)
# 计算理想高通滤波器
for i in range(rows):
for j in range(cols):
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
if D >= D0:
Ideal_HighPass[i, j] = 255
# 应用滤波器到频域表示
mask = Ideal_HighPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得处理后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
#Butterworth高通滤波器
def ButterWorth_HighPassFilter(rows, cols, crow, ccol, D0=40, n=2):
# 创建空白图像以存储滤波结果
ButterWorth_HighPass = np.zeros((rows, cols), np.uint8)
# 计算 Butterworth 高通滤波器
for i in range(rows):
for j in range(cols):
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
if D == 0:
ButterWorth_HighPass[i, j] = 0 # 如果 D = 0直接赋值为 0避免除以零错误
else:
ButterWorth_HighPass[i, j] = 255 / (1 + (D0 / D) ** (2 * n))
# 应用滤波器到频域表示
mask = ButterWorth_HighPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得处理后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
#Gauss高通滤波器
def Gauss_HighPassFilter(rows, cols, crow, ccol, D0=40):
# 创建空白图像以存储滤波结果
Gauss_HighPass = np.zeros((rows, cols), np.uint8)
# 计算 Gauss 高通滤波器
for i in range(rows):
for j in range(cols):
D = np.sqrt((i - crow) ** 2 + (j - ccol) ** 2)
Gauss_HighPass[i, j] = 255 * (1 - np.exp(-0.5 * (D ** 2) / (D0 ** 2)))
# 应用滤波器到频域表示
mask = Gauss_HighPass[:, :, np.newaxis]
fshift = dft_shift * mask
# 逆傅里叶变换以获得平滑后的图像
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
# 归一化图像到0-255
cv2.normalize(img_back, img_back, 0, 255, cv2.NORM_MINMAX)
img_back = np.uint8(img_back)
return img_back
# 读取灰度图像
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 获取图像尺寸
rows, cols = im.shape
crow, ccol = rows // 2, cols // 2 # 中心位置
# 获取图像的频域表示
dft = cv2.dft(np.float32(im), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 理想高通滤波器
Ideal_HighPass = Ideal_HighPassFilter(rows, cols, crow, ccol)
# 巴特沃斯高通滤波器
ButterWorth_HighPass = ButterWorth_HighPassFilter(rows, cols, crow, ccol)
# 高斯高通滤波器
Gauss_HighPass = Gauss_HighPassFilter(rows, cols, crow, ccol)
combined = np.hstack((Ideal_HighPass, ButterWorth_HighPass, Gauss_HighPass))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
FreqsharWin.destroy()
except Exception as e:
print("NVM")
finally:
FreqsharWin = Toplevel()
FreqsharWin.attributes('-topmost', True)
FreqsharWin.geometry("720x300")
FreqsharWin.resizable(True, True) # 可缩放
FreqsharWin.title("频域锐化结果")
# 显示图像
LabelPic = tk.Label(FreqsharWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(FreqsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#空域锐化
def air_shar(root):
global src, AirsharWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 定义Roberts边缘检测算子
def Roberts(Image_In, height, width):
# 创建输出图像
Roberts = np.zeros((height - 1, width - 1), dtype=np.uint8)
# 进行Roberts边缘检测
for i in range(height - 1):
for j in range(width - 1):
# 计算Roberts响应
tmp = abs(int(Image_In[i + 1, j + 1]) - int(Image_In[i, j])) + abs(
int(Image_In[i + 1, j]) - int(Image_In[i, j + 1]))
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
Roberts[i, j] = tmp
return Roberts
# 定义Sobel边缘检测算子
def Sobel(Image_In, height, width):
# 创建输出图像
Image_Sobel = np.zeros((height - 2, width - 2), dtype=np.uint8)
# 进行Sobel边缘检测
for i in range(1, height - 1):
for j in range(1, width - 1):
# 使用Sobel算子计算水平和垂直方向的梯度
tmp1 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) +
int(Image_In[i + 1, j - 1]) + 2 * int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1]))
tmp2 = abs(-int(Image_In[i - 1, j - 1]) - 2 * int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) +
int(Image_In[i - 1, j + 1]) + 2 * int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1]))
tmp = tmp1 + tmp2
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
Image_Sobel[i - 1, j - 1] = tmp
return Image_Sobel
# 定义Prewitt边缘检测算子
def Prewitt(Image_In, height, width):
# 创建输出图像
Image_Prewitt = np.zeros((height - 2, width - 2), dtype=np.uint8)
# 进行Prewitt边缘检测
for i in range(1, height - 1):
for j in range(1, width - 1):
# 使用Prewitt算子计算水平和垂直方向的梯度
tmp1 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i - 1, j]) - int(Image_In[i - 1, j + 1]) +
int(Image_In[i + 1, j - 1]) + int(Image_In[i + 1, j]) + int(Image_In[i + 1, j + 1]))
tmp2 = abs(-int(Image_In[i - 1, j - 1]) - int(Image_In[i, j - 1]) - int(Image_In[i + 1, j - 1]) +
int(Image_In[i - 1, j + 1]) + int(Image_In[i, j + 1]) + int(Image_In[i + 1, j + 1]))
tmp = tmp1 + tmp2
tmp = max(0, min(255, tmp)) # 确保结果在0到255之间
Image_Prewitt[i - 1, j - 1] = tmp
return Image_Prewitt
# 将彩色图像转换为灰度图像
im = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
# 获取图像的尺寸
height, width = im.shape
# 使用各种算子进行边缘检测
Rob = Roberts(im, height, width) # Roberts算子
Sob = Sobel(im, height, width) # Sobel算子
Pre = Prewitt(im, height, width) # Prewitt算子
# 找出最小的尺寸,以便进行裁剪使得结果图像尺寸一致
min_height = min(Rob.shape[0], Sob.shape[0], Pre.shape[0])
min_width = min(Rob.shape[1], Sob.shape[1], Pre.shape[1])
# 对所有结果进行裁剪,使它们的尺寸一致
Rob = Rob[:min_height, :min_width]
Sob = Sob[:min_height, :min_width]
Pre = Pre[:min_height, :min_width]
# 将三种边缘检测结果水平拼接成一张图像
combined = np.hstack((Rob, Sob, Pre))
# 更新 edge 变量,这里假设 edge 是用来存储结果图像的变量
# 创建Toplevel窗口用于显示结果
try:
AirsharWin.destroy()
except Exception as e:
print("NVM")
finally:
AirsharWin = Toplevel()
AirsharWin.attributes('-topmost', True)
AirsharWin.geometry("720x300")
AirsharWin.resizable(True, True) # 可缩放
AirsharWin.title("空域锐化结果")
# 显示图像
LabelPic = tk.Label(AirsharWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
# 配置LabelPic以自适应窗口大小
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(AirsharWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return