You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
4.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import cv2
import os
import numpy as np
import pytesseract
def locate_license_plate(image_path):
if not os.path.isfile(image_path):
print(f"Error: File '{image_path}' does not exist.")
return None
"""
根据输入的图像路径,定位蓝色车牌并返回裁剪出的车牌区域
"""
# 读取图像
car = cv2.imread(image_path, 1)
if car is None:
print(f"Error: Unable to read image '{image_path}'")
return None
# 定义蓝色所对应的色彩空间范围
lower_blue = np.array([100, 110, 110])
upper_blue = np.array([130, 255, 255])
# 将图像转换到HSV颜色空间
hsv = cv2.cvtColor(car, cv2.COLOR_BGR2HSV)
# 获取蓝色区域的掩模
mask_blue = cv2.inRange(hsv, lower_blue, upper_blue)
# 将掩模转换为灰度图像
mask = mask_blue
# 形态学处理,开运算和闭运算
matrix = np.ones((20, 20), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, matrix)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, matrix)
# 二值化
ret, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 寻找最大轮廓并定位车牌
max_area = 0
best_contour = None
for contour in contours:
area = cv2.contourArea(contour)
if area > max_area:
max_area = area
best_contour = contour
# 获取定位车牌的外接矩形框
rect = cv2.minAreaRect(best_contour)
box = cv2.boxPoints(rect)
box = np.int32(box)
# 获取旋转矩阵
angle = rect[2]
flag = 0
print(angle)
if angle < -45:
angle += 90
flag = 1
if angle > 45:
angle -= 90
flag = 1
print(angle)
center = (rect[0][0], rect[0][1])
size = (int(rect[1][0]), int(rect[1][1]))
M = cv2.getRotationMatrix2D(center, angle, 1.0)
# 旋转图像
height, width = car.shape[:2]
rotated = cv2.warpAffine(car, M, (width, height))
# 获取旋转后矩形框的坐标
if flag == 0:
box = cv2.boxPoints(((center[0], center[1]), (size[0], size[1]), 0.0))
box = np.int32(box)
# 裁剪车牌区域
xs = [box[0, 0], box[1, 0], box[2, 0], box[3, 0]]
ys = [box[0, 1], box[1, 1], box[2, 1], box[3, 1]]
x1, x2 = min(xs), max(xs)
y1, y2 = min(ys), max(ys)
ROI_plate = rotated[y1:y2, x1:x2]
return ROI_plate
def preprocess_image_for_ocr(image):
"""
预处理图像以提高 OCR 识别率
"""
# # 去除左右上下各3个像素的边框
height, width = image.shape[:2]
image = image[3:height - 3, 3:width - 3]
# 调整图像大小到 165x40
image = cv2.resize(image, (165, 40), interpolation=cv2.INTER_AREA)
# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# 去噪
denoised = cv2.medianBlur(binary, 3)
return denoised
def find_split_line(image):
"""
在宽度15-30像素之间查找分割线
"""
height, width = image.shape
column_sums = np.sum(image[3:height - 3, 15:30], axis=0) # 忽略顶部和底部的像素
zero_columns = np.where(column_sums == 0)[0] # 找到像素和为0的列
if len(zero_columns) == 0:
# 如果没有找到和为0的列返回默认分割线为22
split_line = 22
else:
# 计算零列的中值作为分割线
split_line = int(np.median(zero_columns)) + 15 # 加上偏移量15
print(split_line)
return split_line
def recognize_characters(image):
"""
使用OCR技术识别车牌上的字符
"""
preprocessed_image = preprocess_image_for_ocr(image)
# 找到分割线
split_line = find_split_line(preprocessed_image)
# 切割图像为两部分
part1 = preprocessed_image[:, :split_line] # 宽度0-split_line部分
part2 = preprocessed_image[:, split_line:] # 剩余部分
# 调用 Tesseract OCR 识别第一部分
custom_config_chi_sim = r'--oem 3 --psm 6 -l chi_sim'
result_chi_sim = pytesseract.image_to_string(part1, config=custom_config_chi_sim)
# 调用 Tesseract OCR 识别第二部分
custom_config_default = r'--oem 3 --psm 6'
result_default = pytesseract.image_to_string(part2, config=custom_config_default)
# 合并两个部分的识别结果
recognized_characters = result_chi_sim.strip() + result_default.strip()
return recognized_characters