You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

319 lines
11 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

import tkinter as tk
from tkinter import filedialog, messagebox
from tkinter import Toplevel
from PIL import Image, ImageTk
import numpy as np
import cv2
import os
img_path = "" # 全局变量,用于存储图像路径
src = None # 全局变量,用于存储已选择的图像
X = None # 用于存储第一张图像
Y = None # 用于存储第二张图像
img_label = None # 全局变量,用于存储显示选择的图片的标签
edge = None
ThreWin = None
VergeWin = None
LineWin = None
def select_image(root):
global img_path, src, img_label, edge
img_path = filedialog.askopenfilename(filetypes=[("Image files", "*.jpg;*.png;*.jpeg;*.bmp")])
if img_path:
# 确保路径中的反斜杠正确处理,并使用 UTF-8 编码处理中文路径
img_path_fixed = os.path.normpath(img_path)
# 图像输入
src_temp = cv2.imdecode(np.fromfile(img_path_fixed, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if src_temp is None:
messagebox.showerror("错误", "无法读取图片,请选择有效的图片路径")
return
src = cv2.cvtColor(src_temp, cv2.COLOR_BGR2RGB)
# 检查 img_label 是否存在且有效
if img_label is None or not img_label.winfo_exists():
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
# 定义 edge 变量为 PIL.Image 对象,以便稍后保存
edge = Image.fromarray(src)
else:
messagebox.showerror("错误", "没有选择图片路径")
def show_selected_image(root):
global img_label
img_label = tk.Label(root)
img_label.pack(side=tk.TOP, pady=10)
img = Image.open(img_path)
img.thumbnail((160, 160))
img_tk = ImageTk.PhotoImage(img)
img_label.configure(image=img_tk)
img_label.image = img_tk
def changeSize(event, img, LabelPic):
img_aspect = img.shape[1] / img.shape[0]
new_aspect = event.width / event.height
if new_aspect > img_aspect:
new_width = int(event.height * img_aspect)
new_height = event.height
else:
new_width = event.width
new_height = int(event.width / img_aspect)
resized_image = cv2.resize(img, (new_width, new_height))
image1 = ImageTk.PhotoImage(Image.fromarray(resized_image))
LabelPic.image = image1
LabelPic['image'] = image1
def savefile():
global edge
filename = filedialog.asksaveasfilename(defaultextension=".jpg", filetypes=[("JPEG files", "*.jpg"), ("PNG files", "*.png"), ("BMP files", "*.bmp")])
if not filename:
return
# 确保 edge 变量已定义
if edge is not None:
try:
edge.save(filename)
messagebox.showinfo("保存成功", "图片保存成功!")
except Exception as e:
messagebox.showerror("保存失败", f"无法保存图片: {e}")
else:
messagebox.showerror("保存失败", "没有图像可保存")
#阈值化
def threshold(root):
global src, ThreWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 转变图像为灰度图
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
#TRIANGLE自适应阈值
ret, TRIANGLE_img = cv2.threshold(gray, 0, 255, cv2.THRESH_TRIANGLE)
#OTSU自适应阈值
ret, OTSU_img = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU)
#TRUNC截断阈值(200)
ret, TRUNC_img = cv2.threshold(gray, 200, 255, cv2.THRESH_TRUNC)
#TOZERO归零阈值(100)
ret, TOZERO__img = cv2.threshold(gray, 100, 255, cv2.THRESH_TOZERO)
combined = np.hstack((TRIANGLE_img, OTSU_img, TRUNC_img, TOZERO__img))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
ThreWin.destroy()
except Exception as e:
print("NVM")
finally:
ThreWin = Toplevel()
ThreWin.attributes('-topmost', True)
ThreWin.geometry("720x300")
ThreWin.resizable(True, True) # 可缩放
ThreWin.title("阈值化结果")
# 显示图像
LabelPic = tk.Label(ThreWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(ThreWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#边缘检测
def verge(root):
global src, VergeWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
# 转变图像为灰度图
grayImage = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
#1.Roberts算子
kernelx = np.array([[-1, 0], [0, 1]], dtype=int)
kernely = np.array([[0, -1], [1, 0]], dtype=int)
#卷积操作
x = cv2.filter2D(grayImage, cv2.CV_16S, kernelx)
y = cv2.filter2D(grayImage, cv2.CV_16S, kernely)
#数据格式转换
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#2.Sobel算子
x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0)
y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1)
#数据格式转换
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
#组合图像
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#3.拉普拉斯算法&高斯滤波
gray = cv2.GaussianBlur(grayImage, (5, 5), 0, 0)
dst = cv2.Laplacian(gray, cv2.CV_16S, ksize=3)
#数据格式转换
Laplacian = cv2.convertScaleAbs(dst)
#4.LoG边缘算子&边缘扩充&高斯滤波
gray = cv2.copyMakeBorder(grayImage, 2, 2, 2, 2, borderType=cv2.BORDER_REPLICATE)
image = cv2.GaussianBlur(gray, (3, 3), 0, 0)
#使用Numpy定义LoG算子
m1 = np.array(
[[0, 0, -1, 0, 0], [0, -1, -2, -1, 0], [-1, -2, 16, -2, -1], [0, -1, -2, -1, 0], [0, 0, -1, 0, 0]])
#卷积运算
rows = image.shape[0]
cols = image.shape[1]
image1 = np.zeros(image.shape)
# 为了使卷积对每个像素都进行运算,原图像的边缘像素要对准模板的中心。
# 由于图像边缘扩大了2像素因此要从位置2到行(列)-2
for i in range(2, rows - 2):
for j in range(2, cols - 2):
image1[i, j] = np.sum((m1 * image[i - 2:i + 3, j - 2:j + 3]))
#数据格式转换
Log = cv2.convertScaleAbs(image1)
#5.Sobel算子
image = cv2.GaussianBlur(grayImage, (3, 3), 0)
#求xy方向的Sobel算子
gradx = cv2.Sobel(image, cv2.CV_16SC1, 1, 0)
grady = cv2.Sobel(image, cv2.CV_16SC1, 0, 1)
#使用Canny函数处理图像x,y分别是3求出来的梯度低阈值50高阈值150
edge_output = cv2.Canny(gradx, grady, 50, 150)
Roberts = cv2.resize(Roberts, (grayImage.shape[1], grayImage.shape[0]))
Sobel = cv2.resize(Sobel, (grayImage.shape[1], grayImage.shape[0]))
Laplacian = cv2.resize(Laplacian, (grayImage.shape[1], grayImage.shape[0]))
Log = cv2.resize(Log, (grayImage.shape[1], grayImage.shape[0]))
edge_output = cv2.resize(edge_output, (grayImage.shape[1], grayImage.shape[0]))
combined = np.hstack((Roberts, Sobel, Laplacian, Log, edge_output))
# 更新 edge 变量
edge = Image.fromarray(combined)
# 创建Toplevel窗口
try:
VergeWin.destroy()
except Exception as e:
print("NVM")
finally:
VergeWin = Toplevel()
VergeWin.attributes('-topmost', True)
VergeWin.geometry("720x300")
VergeWin.resizable(True, True) # 可缩放
VergeWin.title("边缘检测结果")
# 显示图像
LabelPic = tk.Label(VergeWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(combined))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(VergeWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return
#线条变化检测
def line_chan(root):
global src, LineWin, edge
# 判断是否已经选取图片
if src is None:
messagebox.showerror("错误", "没有选择图片!")
return
img = cv2.GaussianBlur(src, (3, 3), 0)
edges = cv2.Canny(img, 50, 150, apertureSize=3)
# 使用HoughLines算法
lines = cv2.HoughLines(edges, 1, np.pi / 2, 118)
result = img.copy()
for i_line in lines:
for line in i_line:
rho = line[0]
theta = line[1]
if (theta < (np.pi / 4.)) or (theta > (3. * np.pi / 4.0)): # 垂直直线
pt1 = (int(rho / np.cos(theta)), 0)
pt2 = (int((rho - result.shape[0] * np.sin(theta)) / np.cos(theta)), result.shape[0])
cv2.line(result, pt1, pt2, (0, 0, 255))
else:
pt1 = (0, int(rho / np.sin(theta)))
pt2 = (result.shape[1], int((rho - result.shape[1] * np.cos(theta)) / np.sin(theta)))
cv2.line(result, pt1, pt2, (0, 0, 255), 1)
# 使用HoughLinesP算法
minLineLength = 200
maxLineGap = 15
linesP = cv2.HoughLinesP(edges, 1, np.pi / 180, 80, minLineLength, maxLineGap)
result_P = img.copy()
for i_P in linesP:
for x1, y1, x2, y2 in i_P:
cv2.line(result_P, (x1, y1), (x2, y2), (0, 255, 0), 3)
combined = np.hstack((result, result_P))
combined = cv2.cvtColor(combined, cv2.COLOR_BGR2RGB)
# 更新 edge 变量
edge = Image.fromarray(result)
# 创建Toplevel窗口
try:
LineWin.destroy()
except Exception as e:
print("NVM")
finally:
LineWin = Toplevel()
LineWin.attributes('-topmost', True)
LineWin.geometry("720x300")
LineWin.resizable(True, True) # 可缩放
LineWin.title("线条变化检测结果")
# 显示图像
LabelPic = tk.Label(LineWin, text="IMG", width=720, height=240)
image = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(combined, cv2.COLOR_BGR2RGB)))
LabelPic.image = image
LabelPic['image'] = image
LabelPic.bind('<Configure>', lambda event: changeSize(event, combined, LabelPic))
LabelPic.pack(fill=tk.BOTH, expand=tk.YES)
# 添加保存按钮
btn_save = tk.Button(LineWin, text="保存", bg='#add8e6', fg='black', font=('Helvetica', 14), width=20,
command=savefile)
btn_save.pack(pady=10)
return