|
|
|
|
from .utils import *
|
|
|
|
|
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAllTypes():
|
|
|
|
|
return list(set(typeList('types')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 评分
|
|
|
|
|
def getAllRateDataByType(type):
|
|
|
|
|
if type == 'all':
|
|
|
|
|
rateList = df['rate'].values
|
|
|
|
|
# rateList = df['rate'].map(lambda x: float(x)).values
|
|
|
|
|
rateList.sort()
|
|
|
|
|
else:
|
|
|
|
|
typeList = df['types'].map(lambda x: x.split(sep=','))
|
|
|
|
|
oldRateList = df['rate'].values
|
|
|
|
|
rateList = []
|
|
|
|
|
for i, item in enumerate(typeList):
|
|
|
|
|
if type in item:
|
|
|
|
|
rateList.append(oldRateList[i])
|
|
|
|
|
|
|
|
|
|
rateObj = {}
|
|
|
|
|
for i in rateList:
|
|
|
|
|
if rateObj.get(i, -1) == -1:
|
|
|
|
|
rateObj[i] = 1
|
|
|
|
|
else:
|
|
|
|
|
rateObj[i] = rateObj[i] + 1
|
|
|
|
|
return list(rateObj.keys()), list(rateObj.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getStart(searchIpt):
|
|
|
|
|
searchdata = list(df.loc[df['title'].str.contains(searchIpt)]['title'])
|
|
|
|
|
if searchdata:
|
|
|
|
|
# print(startes, searchName)
|
|
|
|
|
searchName = searchdata[0]
|
|
|
|
|
startes = list(df.loc[df['title'].str.contains(searchIpt)]['starts'])[0].split(',')
|
|
|
|
|
startData = [
|
|
|
|
|
{
|
|
|
|
|
'name': '五星',
|
|
|
|
|
'value': 0
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
'name': '四星',
|
|
|
|
|
'value': 0
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
'name': '三星',
|
|
|
|
|
'value': 0
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
'name': '二星',
|
|
|
|
|
'value': 0
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
'name': '一星',
|
|
|
|
|
'value': 0
|
|
|
|
|
}
|
|
|
|
|
]
|
|
|
|
|
for i, item in enumerate(startes):
|
|
|
|
|
# startData[i]['value'] = float(re.sub('%', '', item))
|
|
|
|
|
startData[i]['value'] = float(re.sub('%', '', item))
|
|
|
|
|
else:
|
|
|
|
|
searchName = '无此电影'
|
|
|
|
|
startData = ''
|
|
|
|
|
return startData, searchName
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 豆瓣年度评价评分柱状图
|
|
|
|
|
def getYearMeanData():
|
|
|
|
|
# 确保 'rate' , 'year' 列是数值类型
|
|
|
|
|
df['rate'] = pd.to_numeric(df['rate'], errors='coerce')
|
|
|
|
|
df['year'] = pd.to_numeric(df['year'], errors='coerce')
|
|
|
|
|
|
|
|
|
|
# 将非数值类型的数据转换为 NaN
|
|
|
|
|
df.dropna(subset=['rate', 'year'], inplace=True)
|
|
|
|
|
|
|
|
|
|
# 获取唯一的年份列表,并去除可能的 NaN 值
|
|
|
|
|
yearList = list(set(df['year'].dropna().unique()))
|
|
|
|
|
|
|
|
|
|
# 尝试删除列表中的第一个 0,如果它存在的话
|
|
|
|
|
if 0 in yearList:
|
|
|
|
|
yearList.remove(0)
|
|
|
|
|
|
|
|
|
|
# 计算每个年份的电影评分平均值
|
|
|
|
|
meanList = []
|
|
|
|
|
for year in yearList:
|
|
|
|
|
meanList.append(df[df['year'] == year]['rate'].mean())
|
|
|
|
|
|
|
|
|
|
return yearList, meanList
|