You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.5 KiB
104 lines
3.5 KiB
from dateutil import parser
|
|
import matplotlib.dates as mdates
|
|
import matplotlib.pyplot as plt
|
|
import numpy as numpy
|
|
import pandas as pd
|
|
import datetime
|
|
|
|
df_ferrara = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\ferrara_270615.csv')
|
|
df_milano = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\milano_270615.csv')
|
|
df_mantova = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\mantova_270615.csv')
|
|
df_ravenna = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\ravenna_270615.csv')
|
|
df_torino = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\torino_270615.csv')
|
|
df_asti = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\asti_270615.csv')
|
|
df_bologna = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\bologna_270615.csv')
|
|
df_piacenza = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\piacenza_270615.csv')
|
|
df_cesena = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\cesena_270615.csv')
|
|
df_faenza = pd.read_csv(r'D:\python\pythonProject\pythonProject\main\faenza_270615.csv')
|
|
|
|
|
|
# 读取温度和日期数据
|
|
y1 = df_ravenna['temp']
|
|
x1 = df_ravenna['day']
|
|
y2 = df_faenza['temp']
|
|
x2 = df_faenza['day']
|
|
y3 = df_cesena['temp']
|
|
x3 = df_cesena['day']
|
|
y4 = df_milano['temp']
|
|
x4 = df_milano['day']
|
|
y5 = df_asti['temp']
|
|
x5 = df_asti['day']
|
|
y6 = df_torino['temp']
|
|
x6 = df_torino['day']
|
|
|
|
# 把日期从string类型转化为标准的datetime类型
|
|
day_ravenna = [parser.parse(x) for x in x1]
|
|
day_faenza = [parser.parse(x) for x in x2]
|
|
day_cesena = [parser.parse(x) for x in x3]
|
|
day_milano = [parser.parse(x) for x in x4]
|
|
day_asti = [parser.parse(x) for x in x5]
|
|
day_torino = [parser.parse(x) for x in x6]
|
|
'''
|
|
# 调用subplos()函数,重新定义fig,ax变量
|
|
fig, ax = plt.subplots()
|
|
plt.xticks(rotation=70)
|
|
|
|
hours = mdates.DateFormatter('%H:%M')
|
|
ax.xaxis.set_major_formatter(hours)
|
|
|
|
# 这里需要画出三根线,所以需要三组参数,'g'代表'green'(r-离海近,g-离海远)
|
|
ax.plot(day_ravenna, y1, 'r', day_faenza, y2, 'r', day_cesena, y3, 'r')
|
|
ax.plot(day_milano, y4, 'g', day_asti, y5, 'g', day_torino, y5, 'g')
|
|
'''
|
|
|
|
'''
|
|
收集 10 个城市的最高温和最低温,
|
|
用线性图表示气温最值点和离海远近之间的关系。
|
|
'''
|
|
|
|
# dis是一个装城市距离海边距离的列表
|
|
dist = [df_ravenna['dist'][0],
|
|
df_cesena['dist'][0],
|
|
df_faenza['dist'][0],
|
|
df_ferrara['dist'][0],
|
|
df_bologna['dist'][0],
|
|
df_mantova['dist'][0],
|
|
df_piacenza['dist'][0],
|
|
df_milano['dist'][0],
|
|
df_asti['dist'][0],
|
|
df_torino['dist'][0]
|
|
]
|
|
|
|
# temp_max是一个存放每个城市最高温度的列表
|
|
temp_max = [df_ravenna['temp'].max(),
|
|
df_cesena['temp'].max(),
|
|
df_faenza['temp'].max(),
|
|
df_ferrara['temp'].max(),
|
|
df_bologna['temp'].max(),
|
|
df_mantova['temp'].max(),
|
|
df_piacenza['temp'].max(),
|
|
df_milano['temp'].max(),
|
|
df_asti['temp'].max(),
|
|
df_torino['temp'].max()
|
|
]
|
|
|
|
# temp_min存放最低温度的列表
|
|
temp_min = [df_ravenna['temp'].min(),
|
|
df_cesena['temp'].min(),
|
|
df_faenza['temp'].min(),
|
|
df_ferrara['temp'].min(),
|
|
df_bologna['temp'].min(),
|
|
df_mantova['temp'].min(),
|
|
df_piacenza['temp'].min(),
|
|
df_milano['temp'].min(),
|
|
df_asti['temp'].min(),
|
|
df_torino['temp'].min()
|
|
]
|
|
# print(temp_min)
|
|
|
|
# 先画出最高温度
|
|
fig, ax = plt.subplots()
|
|
ax.plot(dist, temp_max, 'ro')
|
|
|
|
plt.show()
|