You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.7 KiB
140 lines
4.7 KiB
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torch.nn as nn
|
|
from torch.utils.data import DataLoader, TensorDataset
|
|
from tqdm import tqdm
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
losses = []
|
|
|
|
data = pd.read_csv("./mchar_train/train.csv")
|
|
data = np.array(data)
|
|
labels = data[:, 0]
|
|
data = data[:, 1:]
|
|
data = np.resize(data, (42000, 28, 28))
|
|
data = torch.from_numpy(data).float().to(device)
|
|
labels = torch.from_numpy(labels).to(device)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, out_planes, stride=1):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(out_planes)
|
|
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(out_planes)
|
|
self.relu = nn.ReLU(inplace=False)
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion * out_planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes, self.expansion * out_planes, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(self.expansion * out_planes)
|
|
)
|
|
|
|
def forward(self, x):
|
|
out = self.relu(self.bn1(self.conv1(x)))
|
|
out = self.relu(self.bn2(out))
|
|
out = out + self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
# num_classes = 10 十分类问题
|
|
def __init__(self, block, num_blocks, num_classes=10):
|
|
super(ResNet, self).__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
# 四个残差结构
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
|
|
self.linear = nn.Linear(512 * block.expansion, num_classes)
|
|
# 激活函数 relu = max(0, x)
|
|
self.relu = nn.ReLU(inplace=False)
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = self.bn1(self.conv1(x))
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
# 平均池化
|
|
out = F.avg_pool2d(out, 4)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
model = ResNet(BasicBlock, [2, 2, 2, 2])
|
|
model.to(device)
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
data = torch.unsqueeze(data, 1)
|
|
dataset = TensorDataset(data, labels)
|
|
data_loader = DataLoader(dataset, batch_size=400, shuffle=True)
|
|
|
|
epochs = 10
|
|
|
|
loss = 0
|
|
for epoch in tqdm(range(epochs), desc=f'Training Progress', leave=False):
|
|
for inputs, labels in data_loader:
|
|
outputs = model(inputs)
|
|
# 梯度
|
|
loss = criterion(outputs, labels)
|
|
losses.append(loss.item())
|
|
optimizer.zero_grad()
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
print(f'Epoch [{epoch + 1}/{epochs}], Loss: {float(loss.item()):.4f}')
|
|
np.savetxt('loss.csv', losses, delimiter=',')
|
|
y = losses
|
|
y = np.array(y)
|
|
x = np.arange(1, len(y) + 1)
|
|
plt.xlabel("iteration")
|
|
plt.ylabel("loss")
|
|
plt.plot(x, y)
|
|
plt.show()
|
|
torch.save(model, 'model_name.pth')
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
model = torch.load('./model_name.pth', map_location=torch.device(device))
|
|
model.eval() # 设置为评估模式
|
|
|
|
data = pd.read_csv("./mchar_train/test.csv")
|
|
data = np.array(data)
|
|
data = torch.from_numpy(data).float().to(device)
|
|
data = data.resize(28000, 28, 28)
|
|
data = torch.unsqueeze(data, 1)
|
|
# 使用模型进行预测
|
|
ans = np.zeros(28000)
|
|
for i in tqdm(range(len(data)), desc='Predicting Progress', leave=False):
|
|
d = torch.unsqueeze(data[i], 0)
|
|
with torch.no_grad():
|
|
output = model(d)
|
|
predicted_class = torch.argmax(output, dim=1).item()
|
|
ans[i] = predicted_class
|
|
np.savetxt('sample.csv', ans, delimiter=",")
|