From 0d12ba52e250c7679ec710757205f6e684da4265 Mon Sep 17 00:00:00 2001 From: jacky-qiao <1102127448@qq.com> Date: Mon, 16 Dec 2024 22:53:23 +0800 Subject: [PATCH] py --- Untitled-3.py | 43 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 43 insertions(+) create mode 100644 Untitled-3.py diff --git a/Untitled-3.py b/Untitled-3.py new file mode 100644 index 0000000..f6c83cd --- /dev/null +++ b/Untitled-3.py @@ -0,0 +1,43 @@ +import numpy as np +import scipy.stats as stats + +# 假设数据 +# 老龄化程度较高的群体数据 +high_aging_data = { + '老龄化给社会带来的主要问题': np.array([75.47, 85.85, 84.91, 53.77, 83.96]), + '政府应该采取哪些措施': np.array([62.26, 16.04, 91.51, 88.68, 51.89,0.94]), + 'life_expectancy': np.array([75, 76, 74, 77, 75]), + # 其他可能的因素... +} + +# 老龄化程度较低的群体数据 +low_aging_data = { + '老龄化给社会带来的主要问题': np.array([84.62, 69.23, 69.23, 15.38, 84.62]), + '政府应该采取哪些措施': np.array([46.15, 7.69, 69.23, 76.92, 30.77,7.69]), + 'life_expectancy': np.array([70, 71, 69, 72, 70]), + # 其他可能的因素... +} + +# 进行t检验并分析结果 +factors = ['老龄化给社会带来的主要问题', '政府应该采取哪些措施', 'life_expectancy'] +system_evaluation = {} + +for factor in factors: + high_group = high_aging_data[factor] + low_group = low_aging_data[factor] + t_stat, p_value = stats.ttest_ind(high_group, low_group) + system_evaluation[factor] = { + 't_statistic': t_stat, + 'p_value': p_value, + 'effect_size': np.abs(t_stat) * np.sqrt((len(high_group) + len(low_group)) / (len(high_group) * len(low_group))) + } + print(f"{factor}的t统计量: {t_stat}, P值: {p_value}") + if p_value < 0.05: + print(f"{factor}在两个群体之间存在显著差异。\n") + else: + print(f"{factor}在两个群体之间没有显著差异。\n") + +# 打印系统评价 +print("系统评价:") +for factor, evaluation in system_evaluation.items(): + print(f"{factor}: t统计量={evaluation['t_statistic']}, P值={evaluation['p_value']}, 影响大小={evaluation['effect_size']}")