You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
129 lines
4.5 KiB
129 lines
4.5 KiB
5 months ago
|
from numbers import Number
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import (
|
||
|
broadcast_all,
|
||
|
lazy_property,
|
||
|
logits_to_probs,
|
||
|
probs_to_logits,
|
||
|
)
|
||
|
from torch.nn.functional import binary_cross_entropy_with_logits
|
||
|
|
||
|
__all__ = ["Geometric"]
|
||
|
|
||
|
|
||
|
class Geometric(Distribution):
|
||
|
r"""
|
||
|
Creates a Geometric distribution parameterized by :attr:`probs`,
|
||
|
where :attr:`probs` is the probability of success of Bernoulli trials.
|
||
|
|
||
|
.. math::
|
||
|
|
||
|
P(X=k) = (1-p)^{k} p, k = 0, 1, ...
|
||
|
|
||
|
.. note::
|
||
|
:func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success
|
||
|
hence draws samples in :math:`\{0, 1, \ldots\}`, whereas
|
||
|
:func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = Geometric(torch.tensor([0.3]))
|
||
|
>>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0
|
||
|
tensor([ 2.])
|
||
|
|
||
|
Args:
|
||
|
probs (Number, Tensor): the probability of sampling `1`. Must be in range (0, 1]
|
||
|
logits (Number, Tensor): the log-odds of sampling `1`.
|
||
|
"""
|
||
|
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
|
||
|
support = constraints.nonnegative_integer
|
||
|
|
||
|
def __init__(self, probs=None, logits=None, validate_args=None):
|
||
|
if (probs is None) == (logits is None):
|
||
|
raise ValueError(
|
||
|
"Either `probs` or `logits` must be specified, but not both."
|
||
|
)
|
||
|
if probs is not None:
|
||
|
(self.probs,) = broadcast_all(probs)
|
||
|
else:
|
||
|
(self.logits,) = broadcast_all(logits)
|
||
|
probs_or_logits = probs if probs is not None else logits
|
||
|
if isinstance(probs_or_logits, Number):
|
||
|
batch_shape = torch.Size()
|
||
|
else:
|
||
|
batch_shape = probs_or_logits.size()
|
||
|
super().__init__(batch_shape, validate_args=validate_args)
|
||
|
if self._validate_args and probs is not None:
|
||
|
# Add an extra check beyond unit_interval
|
||
|
value = self.probs
|
||
|
valid = value > 0
|
||
|
if not valid.all():
|
||
|
invalid_value = value.data[~valid]
|
||
|
raise ValueError(
|
||
|
"Expected parameter probs "
|
||
|
f"({type(value).__name__} of shape {tuple(value.shape)}) "
|
||
|
f"of distribution {repr(self)} "
|
||
|
f"to be positive but found invalid values:\n{invalid_value}"
|
||
|
)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(Geometric, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
if "probs" in self.__dict__:
|
||
|
new.probs = self.probs.expand(batch_shape)
|
||
|
if "logits" in self.__dict__:
|
||
|
new.logits = self.logits.expand(batch_shape)
|
||
|
super(Geometric, new).__init__(batch_shape, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return 1.0 / self.probs - 1.0
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return torch.zeros_like(self.probs)
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return (1.0 / self.probs - 1.0) / self.probs
|
||
|
|
||
|
@lazy_property
|
||
|
def logits(self):
|
||
|
return probs_to_logits(self.probs, is_binary=True)
|
||
|
|
||
|
@lazy_property
|
||
|
def probs(self):
|
||
|
return logits_to_probs(self.logits, is_binary=True)
|
||
|
|
||
|
def sample(self, sample_shape=torch.Size()):
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
tiny = torch.finfo(self.probs.dtype).tiny
|
||
|
with torch.no_grad():
|
||
|
if torch._C._get_tracing_state():
|
||
|
# [JIT WORKAROUND] lack of support for .uniform_()
|
||
|
u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device)
|
||
|
u = u.clamp(min=tiny)
|
||
|
else:
|
||
|
u = self.probs.new(shape).uniform_(tiny, 1)
|
||
|
return (u.log() / (-self.probs).log1p()).floor()
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
value, probs = broadcast_all(value, self.probs)
|
||
|
probs = probs.clone(memory_format=torch.contiguous_format)
|
||
|
probs[(probs == 1) & (value == 0)] = 0
|
||
|
return value * (-probs).log1p() + self.probs.log()
|
||
|
|
||
|
def entropy(self):
|
||
|
return (
|
||
|
binary_cross_entropy_with_logits(self.logits, self.probs, reduction="none")
|
||
|
/ self.probs
|
||
|
)
|