You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
8.3 KiB
195 lines
8.3 KiB
5 months ago
|
import csv
|
||
|
import os
|
||
|
from collections import namedtuple
|
||
|
from pathlib import Path
|
||
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
||
|
|
||
|
import PIL
|
||
|
import torch
|
||
|
|
||
|
from .utils import check_integrity, download_file_from_google_drive, extract_archive, verify_str_arg
|
||
|
from .vision import VisionDataset
|
||
|
|
||
|
CSV = namedtuple("CSV", ["header", "index", "data"])
|
||
|
|
||
|
|
||
|
class CelebA(VisionDataset):
|
||
|
"""`Large-scale CelebFaces Attributes (CelebA) Dataset <http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html>`_ Dataset.
|
||
|
|
||
|
Args:
|
||
|
root (str or ``pathlib.Path``): Root directory where images are downloaded to.
|
||
|
split (string): One of {'train', 'valid', 'test', 'all'}.
|
||
|
Accordingly dataset is selected.
|
||
|
target_type (string or list, optional): Type of target to use, ``attr``, ``identity``, ``bbox``,
|
||
|
or ``landmarks``. Can also be a list to output a tuple with all specified target types.
|
||
|
The targets represent:
|
||
|
|
||
|
- ``attr`` (Tensor shape=(40,) dtype=int): binary (0, 1) labels for attributes
|
||
|
- ``identity`` (int): label for each person (data points with the same identity are the same person)
|
||
|
- ``bbox`` (Tensor shape=(4,) dtype=int): bounding box (x, y, width, height)
|
||
|
- ``landmarks`` (Tensor shape=(10,) dtype=int): landmark points (lefteye_x, lefteye_y, righteye_x,
|
||
|
righteye_y, nose_x, nose_y, leftmouth_x, leftmouth_y, rightmouth_x, rightmouth_y)
|
||
|
|
||
|
Defaults to ``attr``. If empty, ``None`` will be returned as target.
|
||
|
|
||
|
transform (callable, optional): A function/transform that takes in a PIL image
|
||
|
and returns a transformed version. E.g, ``transforms.PILToTensor``
|
||
|
target_transform (callable, optional): A function/transform that takes in the
|
||
|
target and transforms it.
|
||
|
download (bool, optional): If true, downloads the dataset from the internet and
|
||
|
puts it in root directory. If dataset is already downloaded, it is not
|
||
|
downloaded again.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
To download the dataset `gdown <https://github.com/wkentaro/gdown>`_ is required.
|
||
|
"""
|
||
|
|
||
|
base_folder = "celeba"
|
||
|
# There currently does not appear to be an easy way to extract 7z in python (without introducing additional
|
||
|
# dependencies). The "in-the-wild" (not aligned+cropped) images are only in 7z, so they are not available
|
||
|
# right now.
|
||
|
file_list = [
|
||
|
# File ID MD5 Hash Filename
|
||
|
("0B7EVK8r0v71pZjFTYXZWM3FlRnM", "00d2c5bc6d35e252742224ab0c1e8fcb", "img_align_celeba.zip"),
|
||
|
# ("0B7EVK8r0v71pbWNEUjJKdDQ3dGc","b6cd7e93bc7a96c2dc33f819aa3ac651", "img_align_celeba_png.7z"),
|
||
|
# ("0B7EVK8r0v71peklHb0pGdDl6R28", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_celeba.7z"),
|
||
|
("0B7EVK8r0v71pblRyaVFSWGxPY0U", "75e246fa4810816ffd6ee81facbd244c", "list_attr_celeba.txt"),
|
||
|
("1_ee_0u7vcNLOfNLegJRHmolfH5ICW-XS", "32bd1bd63d3c78cd57e08160ec5ed1e2", "identity_CelebA.txt"),
|
||
|
("0B7EVK8r0v71pbThiMVRxWXZ4dU0", "00566efa6fedff7a56946cd1c10f1c16", "list_bbox_celeba.txt"),
|
||
|
("0B7EVK8r0v71pd0FJY3Blby1HUTQ", "cc24ecafdb5b50baae59b03474781f8c", "list_landmarks_align_celeba.txt"),
|
||
|
# ("0B7EVK8r0v71pTzJIdlJWdHczRlU", "063ee6ddb681f96bc9ca28c6febb9d1a", "list_landmarks_celeba.txt"),
|
||
|
("0B7EVK8r0v71pY0NSMzRuSXJEVkk", "d32c9cbf5e040fd4025c592c306e6668", "list_eval_partition.txt"),
|
||
|
]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
root: Union[str, Path],
|
||
|
split: str = "train",
|
||
|
target_type: Union[List[str], str] = "attr",
|
||
|
transform: Optional[Callable] = None,
|
||
|
target_transform: Optional[Callable] = None,
|
||
|
download: bool = False,
|
||
|
) -> None:
|
||
|
super().__init__(root, transform=transform, target_transform=target_transform)
|
||
|
self.split = split
|
||
|
if isinstance(target_type, list):
|
||
|
self.target_type = target_type
|
||
|
else:
|
||
|
self.target_type = [target_type]
|
||
|
|
||
|
if not self.target_type and self.target_transform is not None:
|
||
|
raise RuntimeError("target_transform is specified but target_type is empty")
|
||
|
|
||
|
if download:
|
||
|
self.download()
|
||
|
|
||
|
if not self._check_integrity():
|
||
|
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
||
|
|
||
|
split_map = {
|
||
|
"train": 0,
|
||
|
"valid": 1,
|
||
|
"test": 2,
|
||
|
"all": None,
|
||
|
}
|
||
|
split_ = split_map[verify_str_arg(split.lower(), "split", ("train", "valid", "test", "all"))]
|
||
|
splits = self._load_csv("list_eval_partition.txt")
|
||
|
identity = self._load_csv("identity_CelebA.txt")
|
||
|
bbox = self._load_csv("list_bbox_celeba.txt", header=1)
|
||
|
landmarks_align = self._load_csv("list_landmarks_align_celeba.txt", header=1)
|
||
|
attr = self._load_csv("list_attr_celeba.txt", header=1)
|
||
|
|
||
|
mask = slice(None) if split_ is None else (splits.data == split_).squeeze()
|
||
|
|
||
|
if mask == slice(None): # if split == "all"
|
||
|
self.filename = splits.index
|
||
|
else:
|
||
|
self.filename = [splits.index[i] for i in torch.squeeze(torch.nonzero(mask))]
|
||
|
self.identity = identity.data[mask]
|
||
|
self.bbox = bbox.data[mask]
|
||
|
self.landmarks_align = landmarks_align.data[mask]
|
||
|
self.attr = attr.data[mask]
|
||
|
# map from {-1, 1} to {0, 1}
|
||
|
self.attr = torch.div(self.attr + 1, 2, rounding_mode="floor")
|
||
|
self.attr_names = attr.header
|
||
|
|
||
|
def _load_csv(
|
||
|
self,
|
||
|
filename: str,
|
||
|
header: Optional[int] = None,
|
||
|
) -> CSV:
|
||
|
with open(os.path.join(self.root, self.base_folder, filename)) as csv_file:
|
||
|
data = list(csv.reader(csv_file, delimiter=" ", skipinitialspace=True))
|
||
|
|
||
|
if header is not None:
|
||
|
headers = data[header]
|
||
|
data = data[header + 1 :]
|
||
|
else:
|
||
|
headers = []
|
||
|
|
||
|
indices = [row[0] for row in data]
|
||
|
data = [row[1:] for row in data]
|
||
|
data_int = [list(map(int, i)) for i in data]
|
||
|
|
||
|
return CSV(headers, indices, torch.tensor(data_int))
|
||
|
|
||
|
def _check_integrity(self) -> bool:
|
||
|
for (_, md5, filename) in self.file_list:
|
||
|
fpath = os.path.join(self.root, self.base_folder, filename)
|
||
|
_, ext = os.path.splitext(filename)
|
||
|
# Allow original archive to be deleted (zip and 7z)
|
||
|
# Only need the extracted images
|
||
|
if ext not in [".zip", ".7z"] and not check_integrity(fpath, md5):
|
||
|
return False
|
||
|
|
||
|
# Should check a hash of the images
|
||
|
return os.path.isdir(os.path.join(self.root, self.base_folder, "img_align_celeba"))
|
||
|
|
||
|
def download(self) -> None:
|
||
|
if self._check_integrity():
|
||
|
print("Files already downloaded and verified")
|
||
|
return
|
||
|
|
||
|
for (file_id, md5, filename) in self.file_list:
|
||
|
download_file_from_google_drive(file_id, os.path.join(self.root, self.base_folder), filename, md5)
|
||
|
|
||
|
extract_archive(os.path.join(self.root, self.base_folder, "img_align_celeba.zip"))
|
||
|
|
||
|
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
||
|
X = PIL.Image.open(os.path.join(self.root, self.base_folder, "img_align_celeba", self.filename[index]))
|
||
|
|
||
|
target: Any = []
|
||
|
for t in self.target_type:
|
||
|
if t == "attr":
|
||
|
target.append(self.attr[index, :])
|
||
|
elif t == "identity":
|
||
|
target.append(self.identity[index, 0])
|
||
|
elif t == "bbox":
|
||
|
target.append(self.bbox[index, :])
|
||
|
elif t == "landmarks":
|
||
|
target.append(self.landmarks_align[index, :])
|
||
|
else:
|
||
|
# TODO: refactor with utils.verify_str_arg
|
||
|
raise ValueError(f'Target type "{t}" is not recognized.')
|
||
|
|
||
|
if self.transform is not None:
|
||
|
X = self.transform(X)
|
||
|
|
||
|
if target:
|
||
|
target = tuple(target) if len(target) > 1 else target[0]
|
||
|
|
||
|
if self.target_transform is not None:
|
||
|
target = self.target_transform(target)
|
||
|
else:
|
||
|
target = None
|
||
|
|
||
|
return X, target
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self.attr)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
lines = ["Target type: {target_type}", "Split: {split}"]
|
||
|
return "\n".join(lines).format(**self.__dict__)
|